INTEGRATION OF AN APPLE II PLUS COMPUTER INTO AN EXISTING DUAL AXIS SUN TRACKER SYSTEM(U) MAYAL POSTGRAĐUATE SCHOOL MONTEREY CA R J MORAIS JUN 84 F/G 9/2 AD-A150 778 1/2 UNCLASSIFIED NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

AD-A150 778

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS

INTEGRATION OF AN APPLE II PLUS COMPUTER
INTO AN
EXISTING DUAL AXIS SUN TRACKER SYSTEM

by

Roger J. Morais

June 1984

Thesis Advisor:

H. Titus

Approved for public release; distribution unlimited.

OTTO FILE COPY

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO	. 3. RECIPIENT'S CATALOG NUMBER
Integration of an Apple II plus Computer into an Existing Dual Axis Sun Tracker System	5. TYPE OF REPORT & PERIOD COVERED Master's Thesis; June 1984 6. PERFORMING ORG. REPORT NUMBER
7 AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(a)
Roger J. Morais	
9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Postgraduate School Monterey, California 93943	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE June 1984
Naval Postgraduate School Monterey, California 93943	13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	Unclassified
	154. DECLASSIFICATION DOWNGRADING SCHEDULE
Approved for public release; distribution	on unlimited. Accession For
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro	DTIC TAB Unannounced Justification
18. SUPPLEMENTARY NOTES	By
19 KEY WORDS /Continue on reverse side if necessary and identify by block number	Dist Special
Sun Tracker System	[0.1]
Solar Energy	M
Apple II Plus Computer	
O. ABSTRACT (Continue on reverse side if necessary and identify by block number)	1 40

This thesis describes the integration of an Apple II plus computer into an existing sun tracking system. The Apple Computer replaced an Intel 80/10A single board computer as the system controller. Software development and hardwiring were necessary to successfully integrate the new computer into the system. With the new computer installed, user interaction with the tracking system became possible. Additionally it was

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

#20 - ABSTRACT - (CONTINUED)

possible to replace hard to interpret assembly language code with higher level Basic code as the system controlling software.

S-N 0102- LF- 014- 6601

Approved for public release; distribution unlimited.

Integration of an Apple II plus Computer into an Existing Dual Axis Sun Tracker System

by

Roger J. Morais Lieutenant, United States Navy B.S., University of Washington, 1977

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

June 1984

Approved by:

Approved by:

Approved by:

Alex Sewa h.

(Second Reader

Chairman Department of Electrical Engineering

And Dury

Dean of Science and Engineering

ABSTRACT

This thesis describes the integration of an Apple II plus computer into an existing sun tracking system. The Apple Computer replaced an Intel 80/10A single board computer as the system controller. Software development and hardwiring were necessary to successfully integrate the new computer into the system. With the new computer installed, user interaction with the tracking system became possible. Additionally it was possible to replace hard to interpret assembly language code with higher level Basic code as the system controlling software.

TABLE OF CONTENTS

I.	INT	RODUCTION	7
II.	SYS	TEM DESIGN	13
	A.	SYSTEM COMPONENT DESCRIPTION	13
	В.	SYSTEM STRUCTURE	18
	c.	SYSTEM OPERATION	24
	D.	COMPUTER INTEGRATION	36
III.	SOF'	TWARE DESIGN	40
	A.	INITIAL PLANNING	40
	В.	DRIVE ROUTINE DESIGN	40
	c.	DESIGN OF SIGNAL INPUT ROUTINES	50
	D.	DETERMINATION OF SENSOR VALUES	54
	E.	FLASHLIGHT FOLLOW ROUTINE	55
	F.	SUN TRACKING PROGRAM	57
IV.	CON	CLUSIONS AND RECOMMENDATIONS	62
APPENI	DIX A	A: FLASHLIGHT FOLLOW ROUTINE	64
APPENI	DIX	B: SUN TRACKING PROGRAM	74
LIST (OF RI	EFERENCES	101
INITI	AL D	ISTRIBUTION LIST	102

LIST OF FIGURES

1.	A Flatplate Collector, and the Sun's Track for a Typical One Day Period	9
2.	A Point Concentrating Collector	11
3.	Dual Axis Sun Tracker (Front View)	14
4.	Dual Axis Sun Tracker (Side View)	15
5.	Solar Tracker System Block Diagram	17
6.	Plug Wiring Diagram for Top of Amplification/ Isolation Box	19
7.	Schematic Diagram of Circuit Board Inside Amplification/Isolation Box	22
8.	Power Transistor Layout Inside Amplification/ Isolation Box	25
9.	Intel 80/10A Single Board Computer Connections	26
10.	Schematic Diagram of Typical Stepping Motor	29
11.	Four Step Drive Sequence	32
12.	Eight Step Drive Sequence	33
13.	Sensor Signal Amplification Circuit	35
14.	Analog to Digital Card with Connecting Jacks	37
15.	A488 Drive Routine	42
16.	25 Second Drive Routine	45
17.	12 Second Drive Routine	46
18.	4.8 Second Eight Step Drive Loop	48
19.	2.6 Second Four Step Drive Loop	49
20.	Drive Routine Varying Single Step Element	51
21.	Display Routine	53

I. INTRODUCTION

As the finite conventional energy sources of the world are depleted, and their costs increase, alternative energy sources are becoming more and more attractive. Although in many instances these alternative sources cannot compete economically with gas, oil, and other conventional sources, it is just a matter of time until alternative and conventional sources will be competitive. Already many homes have solar collectors and other devices designed to decrease the consumption of gas, oil, and electricity. Prototype solar power plants are appearing in various parts of the world, and geothermally produced power is now a viable option in areas where this natural resource is available. In short, our energy sources are shifting, and by necessity will continue to shift, from the non-renewable to the renewable.

Of the renewable energy sources available, solar energy is by far the most abundant. On the average, 1.7 × 10E14 kilowatts of solar power continually reach the Earth. If all of this power could be captured and used, it would amount to approximately 5000 times the rate at which power is currently consumed by the entire Earth's population [Ref. 1]. It should be clear that the development of techniques for the conversion of this resource into usable forms of energy is essential to our future as an industrial nation.

One method that is available for converting solar energy into a usable form involves the use of solar thermal collectors. This type of collector captures the sun's radiated energy and transfers the resultant thermal energy to a fluid, which in turn transfers its thermal energy to the user, or places it in a storage facility [Ref. 1].

Solar collectors can be divided into broad categories: the nonconcentrating flat plate collectors, and the concentrating collectors. Flat plate collectors are for the most part stationary, and do not concentrate the energy received by them. In the northern hemisphere flat plate collectors are normally set facing south, and are tilted back to an angle equal to the local latitude plus 10 degrees as shown in Figure 1. In this position the flat plate collector is able to efficiently convert radiated energy into thermal energy for a large range of incidence angles. Point concentrating collectors on the other hand require an incidence angle close to zero to effectively focus the captured radiated energy onto a small area, or a receiver vessel. This means that, in order to maintain a usable incidence angle, either the reflector or its associated receiver must move in response to the sun's changing celestial position. The greater the concentration factor of the particular collector, the more critical the incidence angle of the sun's rays becomes.

The decision to use one collector type over another depends to a large extent upon its intended use. For low

Figure 1. A Flat Plate Collector and the Sun's Track for a Typical One Day Period

temperature applications the fixed plate collector would normally be the correct choice, but for higher temperature applications the concentrating collector should be used. Power plant applications, for example, use concentrating collectors to produce the high temperatures necessary to generate turbogenerator drive steam. Household hot water and swimming pool heating systems, on the other hand, would use flat plate collectors for both economical and practical reasons.

As mentioned, a point concentrating collector's efficiency is a direct function of how accurately the collector can be pointed directly at the sun. A point focusing type collector is usually a mirror surfaced parabolic reflector. This reflector captures the solar radiation that strikes it, and reflects the energy to a point called the focus. A receiver is placed at the focus and is heated to very high temperatures by the concentrated solar energy. Liquid in the receiver absorbs the heat and can be used to perform work, Figure 2A. If the reflector is not pointed directly at the sun, the incidence angle is not zero and the focus shifts from the receiver, as in Figure 2B.

The mechanism that keeps the point concentrating collector pointed at the sun is the main topic of this research. An Apple II plus micro computer is used to control a Dual Axis Sun Tracking system. The system used already existed, but was controlled by an Intel 80/10A Single Board Computer [Ref. 2].

(a) Incidence Angle 0°

(b) Incidence Angle 20°

Figure 2. A Point Concentrating Collector

Additionally the controlling software was written in assembly language, and downloaded onto EPROM'S. The 80/10A was replaced by an Apple II plus computer to (1) allow for user interaction with the sun tracking system and (2) to have the controlling software written in the easier to understand Basic programming language.

II. SYSTEM DESIGN

A. SYSTEM COMPONENT DESCRIPTION

The solar tracking system consists of three main components. The first is a mechanism known as a Dual Axis Solar Tracking Device. This device consists of two stepping motors for horizontal and vertical drive power, four photo diode sensors used for sun location and tracking, and four limit switches that ensure the tracker drive axis are limited in the amount they can rotate, thus preventing system wrap around, and providing start position information. Figures 3 and 4 show front and side views of the solar tracking component. Figure 3 shows the location of the two stepping drive motors, and the layout of the photo diode sensors (ES, WS, US, DS). As shown the horizontal and vertical stepping motors drive the sensor platform and sensor arm through a series of gears. The horizontal motor causes the platform to rotate through a maximum 180 degree arc in either direction, while the vertical motor causes the sensor arm to move through a maximum 90 degree arc between the up and down positions. Figure 4 shows the sensor arm, the limit switches (EL, WL, UL, DL), and the signals into and out of the tracker. The signals consist of four electrical current values that are proportional to the intensity of the light falling on each sensor, four ON (+5V) or OFF (-5V) signals from the

Figure 3. Dual Axis Sun Tracker (Front View)

Figure 4. Dual Axis Sun Tracker (Side View)

limit switches, and drive signals from the controlling computer to the stepping drive motors.

The next component of the system is called the Amplification/Isolation box, hereafter called the A/I box. This box contains the circuitry necessary to interface the controlling computer to the sun tracker. Motor drive commands arriving from the computer are amplified and sent on to the drive motors, and sensor signals are amplified before being sent to the computer. Also associated with the amplification circuitry are isolation circuits to protect the computer from short circuits and power surges. The limit switch signals also go through the A/I box on their way to the computer, but are not altered in the process.

The third main component is the Apple II plus computer. This component with its associated software takes in the sensor data and provides the proper drive motor control signals to locate and track the sun. Limit switch values are also checked to determine if the tracker has reached the limit of a particular drive direction. As mentioned the Apple replaced the Intel computer so that the system would be user interactive, and the software would be easier to interpret in the higher level Basic language. Figure 5 is a system block diagram which shows the signal flow between components, as well as the internal flow of the computer. The analog to digital card and controlling software within the computer will be discussed in detail later.

Figure 5. Solar Tracker System Block Diagram

B. SYSTEM STRUCTURE

While some system operation and hardware descriptions were available in [Ref. 2], they were insufficient to provide the detailed system knowledge necessary to integrate a new computer into the system. It was therefore necessary to begin the integration process by performing a thorough system trace out.

The A/I box was the initial and main focus of this trace out since all system signals enter and exit this component. First, all wires entering and leaving the box were traced. Figure 6 and Table 1 describe the results of this effort. Jacks one through three and single wire connections A through V are illustrated with their associated inputs and outputs, these inputs and outputs are further described in Table 1. It should be noted that the microprocessor referenced in the signal descriptions is the original Intel 80/10A and not the Apple. These signals are provided since the Intel hook up was left intact so it can still be used if desired. The Apple is connected inside the A/I box via a bus bar. Once the input and output connections were determined, the A/I boxes internal electronics could be traced. Figure 7 and Table 2 show the layout of the circuit board inside the A/I box, and describe the signals entering and leaving it. Note that the four LM747 OPAMP chips are all connected up identically, but only the east sensor (ES) hook up is drawn to avoid cluttering the

Plug Wiring Diagram for Top of Amplification/Isolation Box Figure 6.

TABLE 1

SIGNAL DESCRIPTION FOR TOP OF AMPLIFICATION/ISOLATION BOX

JACK J1

- (1) EAST LIMIT SWITCH SIGNAL TO MICROPROCESSOR
- (2) DOWN SENSOR SIGNAL TO MICROPROCESSOR
- (3) UP SENSOR SIGNAL TO MICROPROCESSOR
- (4) WEST SENSOR SIGNAL TO MICROPROCESSOR
- (5) EAST SENSOR SIGNAL TO MICROPROCESSOR
- (6) GROUND
- (7) GROUND
- (8) UP LIMIT SWITCH SIGNAL TO MICROPROCESSOR
- (9) DOWN LIMIT SWITCH SIGNAL TO MICROPROCESSOR
- (10) WEST LIMIT SWITCH SIGNAL TO MICROPROCESSOR
- (11) NOT USED
- (12) +15 VOLTS TO LM 747 CHIP
- (13) -15 VOLTS TO LM 747 CHIP
- (14) GROUND

JACK J2

- (1) UP SENSOR INPUT FROM TRACKER
- (2) EAST SENSOR INPUT FROM TRACKER
- (3) VERTICAL DRIVE STEP ELEMENT #1 FROM MICROPROCESSOR
- (4) VERTICAL DRIVE STEP ELEMENT #2 FROM MICROPROCESSOR
- (5) VERTICAL DRIVE STEP ELEMENT #3 FROM MICROPROCESSOR
- (6) VERTICAL DRIVE STEP ELEMENT #4 FROM MICROPROCESSOR
- (7) GROUND
- (8) NOT USED
- (9) WEST SENSOR INPUT FROM TRACKER
- (10) DOWN SENSOR INPUT FROM TRACKER
- (11) HORIZONTAL DRIVE STEP ELEMENT #1 FROM MICROPROCESSOR
- (12) HORIZONTAL DRIVE STEP ELEMENT #2 FROM MICROPROCESSOR
- (13) HORIZONTAL DRIVE STEP ELEMENT #3 FROM MICROPROCESSOR
- (14) HORIZONTAL DRIVE STEP ELEMENT #4 FROM MICROPROCESSOR

JACK J3

- (1) +6.3 VOLTS TO VERTICAL STEPPING MOTOR
- (2) AMPLIFIED VERTICAL STEP ELEMENT #3 TO VERTICAL STEPPING MOTOR .
- (3) +6.3 VOLTS TO VERTICAL STEPPING MOTOR
- (4) AMPLIFIED VERTICAL STEP ELEMENT #1 TO VERTICAL STEPPING MOTOR

- (5) AMPLIFIED VERTICAL STEP ELEMENT #2 TO VERTICAL STEPPING MOTOR
- (6) AMPLIFIED VERTICAL STEP ELEMENT #4 TO VERTICAL STEPPING MOTOR
- (7) AMPLIFIED HORIZONTAL STEP ELEMENT #4 TO HORIZONTAL STEPPING MOTOR
- (8) +6.3 VOLTS TO HORIZONTAL STEPPING MOTOR
- (9) +6.3 VOLTS TO HORIZONTAL STEPPING MOTOR
- (10) AMPLIFIED HORIZONTAL STEP ELEMENT #3 TO HORIZONTAL STEPPING MOTOR
- (11) AMPLIFIED HORIZONTAL STEP ELEMENT #2 TO HORIZONTAL STEPPING MOTOR
- (12) AMPLIFIED HORIZONTAL STEP ELEMENT #1 TO HORIZONTAL STEPPING MOTOR
- (13) NOT USED
- (14) NOT USED

SINGLE PIN JACKS

- (A) +5 VOLTS
- (B) +5 VOLTS TO LIMIT SWITCHES
- (C) -15 VOLT INPUT WHEN NOT USING INTEL 80/10A
- (D) +15 VOLT INPUT WHEN NOT USING INTEL 80/10A
- (E) EAST LIMIT SWITCH SIGNAL FROM TRACKER
- (F) NOT USED
- (G) WEST LIMIT SWITCH SIGNAL FROM TRACKER
- (H) NOT USED
- (I) NOT USED
- (J) +6.3 VOLTS FROM EXTERNAL POWER SUPPLY
- (K) +6.3 VOLTS FROM EXTERNAL POWER SUPPLY
- (L) GROUND
- (M) GROUND
- (N) NOT USED
- (0) NOT USED
- (P) UP LIMIT SWITCH SIGNAL FROM TRACKER
- (Q) NOT USED
- (R) DOWN LIMIT SWITCH SIGNAL FROM TRACKER
- (S) NOT USED
- (T) NOT USED
- (U) GROUND
- (V) GROUND

Schematic Diagram of Circuit Board Inside Amplification/Isolation Box

TABLE 2

AMPLIFICATION/ISOLATION BOX CIRCUIT BOARD SIGNALS (LETTERED PINS ARE ON TOP OF CIRCUIT BOARD)

- (A) GROUND
- (1) GROUND
- (B) +6.3 VOLTS TO 7805 VOLTAGE REGULATOR FOR +5 VOLTS REGULATED SUPPLY TO 7407 CHIPS
- (2) +15 VOLTS IN FOR LM 747 CHIPS
- (C) -15 VOLTS IN FOR LM 747 CHIPS
- (3) +5 VOLTS OUT USED BY LIMIT SWITCHES
- (M) DOWN SENSOR AMPLIFIED SIGNAL OUTPUT
- (11) DOWN SENSOR UNAMPLIFIED SIGNAL INPUT TO LM 747 CHIP
- (N) UP SENSOR AMPLIFIED SIGNAL OUTPUT
- (12) UP SENSOR UNAMPLIFIED SIGNAL INPUT TO LM 747 CHIP
- (P) WEST SENSOR AMPLIFIED SIGNAL OUTPUT
- (13) WEST SENSOR UNAMPLIFIED SIGNAL INPUT TO LM 747 CHIP
- (R) EAST SENSOR AMPLIFIED SIGNAL OUTPUT
- (14) EAST SENSOR UNAMPLIFIED SIGNAL INPUT TO LM 747 CHIP
- (S) VERTICAL STEP ELEMENT #1 QUTPUT TO POWER TRANSISTOR BASE
- (15) VERTICAL STEP ELEMENT #1 INPUT FROM MICROPROCESSOR
- (T) VERTICAL STEP ELEMENT #2 OUTPUT TO POWER TRANSISTOR BASE
- (16) VERTICAL STEP ELEMENT #2 INPUT FROM MICROPROCESSOR
- (U) VERTICAL STEP ELEMENT #3 OUTPUT TO POWER TRANSISTOR BASE
- (17) VERTICAL STEP ELEMENT #3 INPUT FROM MICROPROCESSOR
- (V) VERTICAL STEP ELEMENT #4 OUTPUT TO POWER TRANSISTOR BASE
- (18) VERTICAL STEP ELEMENT #4 INPUT FROM MICROPROCESSOR
- (W) HORIZONTAL STEP ELEMENT #4 OUTPUT TO POWER TRANSISTOR
 BASE
- (19) HORIZONTAL STEP ELEMENT #4 INPUT FROM MICROPROCESSOR
- (X) HORIZONTAL STEP ELEMENT #3 OUTPUT TO POWER TRANSISTOR
 BASE
- (20) HORIZONTAL STEP ELEMENT #3 INPUT FROM MICROPROCESSOR
- (Y) HORIZONTAL STEP ELEMENT #2 OUTPUT TO POWER TRANSISTOR BASE
- (21) HORIZONTAL STEP ELEMENT #2 INPUT FROM MICROPROCESSOR
- (Z) HORIZONTAL STEP ELEMENT #1 OUTPUT TO POWER TRANSISTOR
 BASE
- (22) HORIZONTAL STEP ELEMENT #1 INPUT FROM MICROPROCESSOR

figure. Additionally all signals entering and leaving the circuit board apply to either the Intel or Apple computers. Figure 8 shows the remainder of the electronics inside the A/I box, namely the eight power transistors used to amplify the step signals sent to the stepping motors. The step elements VI through V4 and H1 through H4 will be explained in detail later. Figure 9 and Table 3 are included only for completeness of system documentation, and to avoid future duplication of effort. They represent the Intel 80/10A wiring and signal description.

C. SYSTEM OPERATION

Once the signal flow had been determined, the actual system operation was the next focus of investigation. This information was necessary because the characteristics of the signals coming into, and the type of the signals going out of the new computer had to be known.

There were two areas of investigation during the system operation phase. The first was the two driver stepping motors, and their control circuitry. A thorough understanding of their operation was essential to the later development of the software drive routines. As no technical documentation was readily available for the stepping motors that were used, the following data was obtained from [Ref. 2], experimentation, name plate data, and general stepping motor theory [Ref. 3]. The motors used were Superior Electric synchronous

Power Transistor Layout Inside Amplification/Isolation Box Figure 8.

INTEL 80/10A Single Board Computer Connections Figure 9.

TABLE 3

INTEL 80/10A SINGLE BOARD COMPUTER CONNECTIONS

JACK J1

- (36) GROUND
- (41) HORIZONTAL STEP ELEMENT #1 TO AMPLIFIER/ISOLATION BOX
- (43) HORIZONTAL STEP ELEMENT #2 TO AMPLIFIER/ISOLATION BOX
- (45) HORIZONTAL STEP ELEMENT #3 TO AMPLIFIER/ISOLATION BOX
- (47) HORIZONTAL STEP ELEMENT #4 TO AMPLIFIER/ISOLATION BOX (REMAINING PINS NOT USED)

JACK J2

- (44) GROUND
- (43) VERTICAL STEP ELEMENT #1 TO AMPLIFIER/ISOLATION BOX
- (45) VERTICAL STEP ELEMENT #2 TO AMPLIFIER/ISOLATION BOX
- (47) VERTICAL STEP ELEMENT #3 TO AMPLIFIER/ISOLATION BOX
- (49) VERTICAL STEP ELEMENT #4 TO AMPLIFIER/ISOLATION BOX (REMAINING PINS NOT USED)

JACK J3

- (2) GROUND
- (4) GROUND
- (6) -15 VOLTS TO AMPLIFIER/ISOLATION BOX
- (8) +15 VOLTS TO AMPLIFIER/ISOLATION BOX
- (18, 19, 21, 23, 25, 27, 29, 31, 33) GROUND
- (20) EAST SENSOR INPUT FROM AMPLIFIER/ISOLATION BOX
- (22) WEST SENSOR INPUT FROM AMPLIFIER/ISOLATION BOX
- (24) UP SENSOR INPUT FROM AMPLIFIER/ISOLATION BOX
- (26) DOWN SENSOR INPUT FROM AMPLIFIER/ISOLATION BOX
- (28) EAST LIMIT SWITCH INPUT FROM AMPLIFIER/ISOLATION BOX
- (30) WEST LIMIT SWITCH INPUT FROM AMPLIFIER/ISOLATION BOX
- (32) DOWN LIMIT SWITCH INPUT FROM AMPLIFIER/ISOLATION BOX (REMAINING PINS NOT USED)

stepping motors that have a nominal DC voltage rating of 6.9 Volts and a rated amperes per winding value of 1.6 Amps. Figure 10 is a schematic representation of a typical stepping motor, and its interface to the system. In this schematic the rotor is a four pole permanent magnet (large circle). There are eight stators, each of which is an electromagnet. These stators are divided into two groups of four. One group is controlled by power transistors 1 and 2, the other by 3 and 4. Each stator is wound by wire in two directions. For the set controlled by power transistors 1 and 2 the polarities of each stator depend on whether transistor 1 or 2 is turned The left hand rule for electron current flow can be used to determine the polarity of each sensor. By wrapping the fingers of the left hand around the stator in the direction of current flow, the north pole is determined to be the end of the stator that the thumb points to. For example if transistor 1 is turned on, electron current will flow from the grounded terminal of the transistor to the +6.9 Volts at the top of the diagram. By applying the left hand rule, a S-N-S-N configuration is observed. If transistor 2 were conducting a N-S-N-S configuration would result. Transistors 1 and 2 conducting at the same time is not a valid state. Transistors 3 and 4 control the other set of stators in a similar manner. It is by this ability to alter the polarity of these stator sets that the stepping motion of the motors is realized. An example step command is illustrated in the

(arrows indicate the direction of electron current flow)

Figure 10. Schematic Diagram of Typical Stepping Motor

figure. In this instance a 1001 step is input to a 7407 noninverting hex driver chip. A "1" represents a +5 Volt high signal, and a "0" represents a zero Volt low signal. When a low signal is applied, the driver can sink up to 30mA., and the +5 Volts at the base of the transistor is dropped across the base resistor thus keeping the transistor turned off. When a high signal is sensed the driver becomes an open circuit, and the +5 Volts is no longer dropped across the base resistor. The +5 Volts is sensed at the base of the NPN transistor, and it is turned on. Current can now be conducted through the stator windings so that the stators are polarized. With the above description in mind, the 1001 step example can easily be shown to produce the indicated stator polarizations. Finally remembering that unlike poles attract, the rotor orientation is set as shown.

In summary each step command to the stepping motor has four step elements, as in the 1001 example. The first two elements control one set of four stators, and the last two steps the second set. The polarity configuration of a stator set is determined by which of the two controlling step elements is high.

The above description is for a four pole rotor with eight stators. The actual stepping motor used has four 50 pole rotors stacked one above the other, each offset slightly from the one below it. This offset in essence gives a 100 pole rotor. There are still only eight electromagnetic

stators, but each has five high points on its surface. The magnetic field is concentrated at the high points giving the appearance of five stators of the same polarity. This large number of poles allows the step size to be either 0.9 or 1.8 degrees, depending upon the drive sequence used to step the motor. These step sizes correspond to either 400 or 200 steps per 360 degree revolution. The example that was discussed in Figure 10 would have produced 22.5 or 45 degree steps for 16 or 8 steps per revolution, again depending upon the drive sequence used. The smaller steps of the real motor are clearly more useful in real world applications than the large steps of the example.

As mentioned the step size depends on the drive sequence used. Figure 11 shows a four step loop. Notice that each change in stator polarization produces a 45 degree movement of the rotor. The loop is repeated over and over to drive the stepping motor the desired number of steps. In this case the loop must be repeated twice per 360 degree revolution. It should be noted that step one produced a 45 degree movement of the rotor to place it in the first position, so that four steps produce a 180 degree transition. The small numbers 1 and 2 on the first step, mark the starting positions of the first and second stator sets. The stators are laid out in the same manner as those in Figure 10. Again the first two elements of each step control stator set one, and the last two stator set two. Figure 12 is a typical eight step loop.

Figure 11. Four Step Drive Routin

gigure 12. Eight Step Drive Sequence

In this case each step moves the rotor 22.5 degrees. The smaller steps are realized by inserting four extra steps between the original four. In each of the extra steps one of the stator sets is left off by not turning on either of its associated transistors. The rotor aligns itself as illustrated, on the energized stator set. It is these same 4 and 8 step loops that produce the 0.9 and 1.8 degree steps of the real drive motors. The only difference is that the loop must be repeated many more times per motor revolution. With the above information, drive routines for the new computer could now be developed.

The second of the two main areas of investigation was the sensor circuitry. As mentioned the sensors are photodiodes that generate a current proportional to the intensity of the light falling on them. Figure 13 shows sensor output signal amplification circuitry for the east sensor. The letters A through F correspond to the letters at the top of the A/I box circuit board shown in Figure 7, so that this figure can be tied to the actual hardware. The circuit operates as follows. The first op amp provides a voltage output proportional to the current input from the energized photodiode. This voltage is then further amplified by the second op amp, to provide a signal that is usable by the computer. This output varies from near zero volts when the sensor is in a shadow, to near 2.5 volts in the bright sunlight.

Figure 13. Sensor Signal Amplification Circuit

D. COMPUTER INTEGRATION

With the preliminary research complete, the problem of integrating the new computer into the system could be taken up. The Apple II Plus computer is equipped with several internal card slots, so that integrated circuit cards which perform many different functions can be added to the computer. After some difficulty in choosing a card to use for interfacing the computer to the system, an analog to digital/ digital to analog card (A/D card) was chosen [Ref. 4]. This card has 16 channels of analog input and 16 channels of analog output. Each of the 32 channels has an address and can be accessed by software commands. Eight of the digital to analog output channels (4 per motor) were used to deliver the drive step commands to the stepper motors. Additionally eight of the analog to digital input channels were used to input the 4 sensor and the 4 limit switch signals. Figure 14 shows the A/D card and the jacks coming from it. These jacks are connected to two similar jacks coming from the A/I box. Table 4 describes the signals on the jacks, lists the A/D card channel associated with each pin (whether used or not), and gives the color of the wire associated with each signal for ease of identification. With the hardware interfacing completed the development of the controlling software could begin.

Analog to Digital Card with Connecting Jacks Figure 14.

TABLE 4

LISTING OF THE A/D CARD JACK CONNECTIONS (WIRE COLOR GIVEN AT END OF SIGNAL DESCRIPTION) (NOTE CARD CHANNEL GIVEN BELOW SIGNAL DESCRIPTION)

JACK #1

- (1) NOT USED CHANNEL 15
- (2) NOT USED CHANNEL 14
- (3) NOT USED CHANNEL 13
- (4) NOT USED CHANNEL 12
- (5) NOT USED CHANNEL 11
- (6) NOT USED CHANNEL 10
- (7) NOT USED CHANNEL 9
- (8) VERTICAL STEP ELEMENT #4 TO AMP/ISOLATION BOX (YELLOW)
 CHANNEL 8
- (9) VERTICAL STEP ELEMENT #3 TO A/I BOX (GREEN)
 CHANNEL 7
- (10) VERTICAL STEP ELEMENT #2 TO A/I BOX (RED) CHANNEL 6
- (11) VERTICAL STEP ELEMENT #1 TO A/I BOX (BLUE) CHANNEL 5
- (12) HORIZONTAL STEP ELEMENT #4 TO A/I BOX (YELLOW)
 CHANNEL 4
- (13) HORIZONTAL STEP ELEMENT #3 TO A/I BOX (GREEN) CHANNEL 3
- (14-21) COMMON GROUNDS, GROUND WIRE FROM A/I BOX IN 14 (BLACK)
- (22) NOT USED
- (23) NOT USED CHANNEL 0
- (24) HORIZONTAL STEP ELEMENT #1 TO A/I BOX (BLUE)
 CHANNEL 1
- (25) HORIZONTAL STEP ELEMENT #2 TO A/I BOX (RED) CHANNEL 2

JACK #2

- (1) NOT USED CHANNEL 15
- (2) NOT USED CHANNEL 14
- (3) NOT USED CHANNEL 13
- (4) NOT USED CHANNEL 12
- (5) NOT USED CHANNEL 11
- (6) NOT USED CHANNEL 10
- (7) NOT USED CHANNEL 9
- (8) DOWN LIMIT SWITCH INPUT FROM A/I BOX (YELLOW) CHANNEL 8
- (9) UP LIMIT SWITCH INPUT FROM A/I BOX (GREEN) CHANNEL 7
- (10) WEST LIMIT SWITCH INPUT FROM A/I BOX (RED) CHANNEL 6
- (11) EAST LIMIT SWITCH INPUT FROM A/I BOX (BLUE) CHANNEL 5
- (12) DOWN SENSOR INPUT FROM A/I BOX (YELLOW)
 CHANNEL 4
- (13) UP SENSOR INPUT FROM A/I BOX (GREEN) CHANNEL 3
- (14-21) COMMON GROUNDS, GROUND WIRE FROM A/I BOX IN 20 (BLACK)
- (22) NOT USED
- (23) NOT USED CHANNEL O
- (24) EAST SENSOR INPUT FROM A/I BOX (BLUE) CHANNEL 1
- (25) WEST SENSOR INPUT FROM A/I BOX (RED) CHANNEL 2

III. SOFTWARE DESIGN

A. INITIAL PLANNING

The controlling software for the system was developed in three distinct phases. The first phase was the design of the driver routines for the system stepping motors. The second phase was the development of the sensor and limit switch inputs. The third phase was to combine the first two phases into a program that would control the system in the desired manner. The program developed in the last phase had to be capable of obtaining the input data from the 4 photodiode sensors, analyzing it, and causing the appropriate drive motor to turn in the proper direction. The program must also ensure that none of the limit switches had been depressed, and react accordingly if one had been.

B. DRIVE ROUTINE DESIGN

As was mentioned previously, the Apple computer has several internal slots available for the installation of various cards. Since each drive step consists of 4 bits of information, a parallel I/O card was initially chosen to output the step information to the drive motors. Specifically an A488 Communication Interface card was chosen [Ref. 5]. This card is designed for communication between the Apple and digitally controlled peripherals. The card has 8 bidirectional data lines, and 8 control lines. The data sent

and received by the card is by means of the ASCII character set. The control lines of the card are used for interdevice synchronization and data transmission setup commands. Attempts were made to utilize this card by having it output the ASCII character whose last four bits corresponded to the desired drive step. Figure 15 is an example of a program developed for an 8 step drive routine. Lines 70 through 170 are setup commands required by the card, and 180 through 370 are the dirve loop. All attempts to make this card work failed due to the lack of handshaking and control signals coming from the seeker system.

The A/D card mentioned in the last section was also in the computer, and was to be used for the conversion of the analog input signals into a digital form usable by the computer. The fact that the A/D card also had 16 output channels lead to the idea that these channels could be used to produce the necessary drive steps. It was concluded that if the 4 elements comprising the step arrived at the stepping motor in rapid serial succession rather than at the same instant in parallel form, the stepping motor would still perform satisfactorily. This would allow for the use of only one card for the complete system interface, rather than the two required if the A488 were used.

The value of a particular A/D card output channel is set by sending a number from 0 to 255 to the channel address. The following are some of the output voltage values corresponding to various numbers sent to the channel.

```
SL% = 5
10
     DT$ = "SUN: 01"
20
     RS$ = ""
30
     FS$ = ""
40
     CI$ = ""
50
     PA% = 1
60
     X = 256 * SL%
70
     IC = 49152 + X
80
     SN = IC + 16
90
     FI = IC + 32
100
     PA = IC + 96
110
     SO = IC + 192
120
     SR = 49295 + SL% * 16
130
     PE = 1144 + SL\%:DU = 1272 + SL\%
140
     EOS = 1912 + SL%
150
     CALL FI:
160
170
     CALL IC:
     FOR T = 1 TO 16:RS$ = RS$ + "": NEXT
180
     FOR A = 1 TO 100
190
     CI$ = "S,SUN":FS$ = "J": CALL SN:
200
     PA% = 100: CALL PA:
210
     CI$ = "S,SUN":FS$ = "H": CALL SN:
220
     PA% = 100: CALL PA:
230
     CI$ = "S,SUN":FS$ = "I": CALL SN:
240
250
     PA% = 100: CALL PA:
     CI$ = "S,SUN":FS$ = "A": CALL SN:
260
270
     PA% = 100: CALL PA:
     CI$ = "S,SUN":FS$ = "E": CALL SN:
280
     PA% = 100: CALL PA:
290
     CI$ = "S,SUN":FS$ = "D": CALL SN:
300
     PA% = 100: CALL PA:
310
     CI$ = "S,SUN":FS$ = "L": CALL SN:
320
     PA% = 100: CALL PA *
330
     CI$ = "S,SUN":FS$ = "B": CALL SN:
340
     PA% = 100: CALL PA:
360
     NEXT A
370
380
     END
```

PROGRAM TO DRIVE SEEKER WITH A488 PARALLEL I/O CARD

Figure 15. A488 Drive Routine

NUMBER	OUTPUT
0	-5.0 Volts
64	-2.5
128	0.0
192	+2.5
255	+5.0

From the table is can be seen that the card can output from -5 to +5 volts in .039 Volt increments. The values 128 and 255 were chosen to represent the 0 and the 1 values for each step element. Analog output channels 1-4 were used for the 4 horizontal drive step elements, and 5-8 for the vertical step elements (see Table 4). To define a particular output from a channel, the base channel address must first be computed. To do this the equation M = 49,280 + (slot)number*16) is used. Here the 49,280 is the starting address of all slot dependent locations in the computer, and the slot number is an integer from 1 to 7, depending upon the slot that the card was installed in. Next a channel number from 0 to 15 must be added to the base address M in order to address a particular channel on the card. Note that the A/D card must be installed in slot number four if the sun seeker program is to work properly. Once the A/D card channel address (M+ CHANNEL ADDRESS) has been calculated, the POKE command can be used to input any value to the channel within the allowable range. POKE is a BASIC command which has the form POKE (memory address), (desired value). Figure

16 is an early drive routine using the POKE command. The slot number that the card is installed in is given in line 10, lines 20-45 assign step element values to an array, and lines 50-120 are three nested Do Loops. The inner most Do Loop I, calculates the memory base value M, and POKES the values of the indicated array element into the proper card channel (M+I). So the basic memory value M is incremented by adding the Do Loop values I (1-4) to it, thus four channel addresses are calculated. These addresses correspond to the A/D card channels used to output the 4 element drive step. These addresses together with the desired output voltage values are placed in POKE commands to form the step. The next Do Loop in Figure 16 (the H loop), generates a four step loop like that of Figure 11. Finally the G loop causes the 4 step drive loop to be repeated 60 times.

When this routine was run it suddenly became clear that great programming efficiency would be necessary if any kind of acceptable system response times were to be achieved. To make a transition of only 90 degrees with this drive routine, 25 seconds were required. In other words to move the tracker from an east to a west facing position, it would take close to one minute. Figure 17 is the same drive routine as that of Figure 16, except that the M calculation was taken out of the Do Loop, and calculated only once at the beginning of the program. This simple change reduced the 90 degree transition time to 12 seconds, for a savings of 13 seconds. While this

```
FIRST DRIVE ROUTINE USING A/D
*** CARD. MEMORY CALCULATION IN LOOP***
      REQUIRED 25 SEC. FOR 90 DEG
            TRANSITION.
10
     SL = 4
20
     DIM D(16)
30
     D(1) = 255:
     D(2) = 128;
     D(3) = 255:
     D(4) = 128
     D(5) = 255:
35
     D(6) = 128:
     D(7) = 128:
     D(8) = 255
40
     D(9) = 128:
     D(10) = 255:
     D(11) = 128:
     D(12) = 255
45
     D(13) = 128:
     D(14) = 255:
     D(15) = 255:
     D(16) = 128
50
     FOR G = 1 TO 60
60
     FOR H = 1 TO 4
70
     FOR I = 1 TO 4
     M = 49280 + (SL * 16)
75
80
     POKE M + I,D(I + (4 * (H - 1)))
90
     NEXT
110 NEXT
120
     NEXT
```

Figure 16. 25 Second Drive Routine

```
SECOND DRIVE ROUTINE.
        BY MOVING MEMORY CALC.
     OUTSIDE LOOP, REDUCED TRANSIT
     TIME TO 12.4 SEC FOR A 90 DEG
***
              TRANSITION.
10
     SL = 4
15
     M = 49280 + (SL * 16)
20
     DIM D(16)
     D(1) = 255:
30
     D(2) = 128:
     D(3) = 255:
     D(4) = 128
35
     D(5) = 255:
     D(6) = 128:
     D(7) = 128:
     D(8) = 255
40
     D(9) = 128:
     D(10) = 255:
     D(11) = 128:
     D(12) = 255
45
     D(13) = 128:
     D(14) = 255:
     D(15) = 255:
     D(16) = 128
50
     FOR G = 1 TO 60
     FOR H = 1 TO 4
60
     FOR I = 1 TO 4
70
80
     POKE M + I,D(I + (4 * (H - 1)))
90
     NEXT
     NEXT
110
120
     NEXT
```

Figure 17. 12 Second Drive Routine

change cut the time in half, still more time would have to be cut because in actual use the drive routine would have logic placed between the steps, further slowing it down.

Figure 18 shows the third drive routine developed. To increase execution speed the step elements were taken out of an array, and placed directly into the poke commands. A/D card channel addresses for the 4 channels used per step are calculated at the beginning of the program before entering the drive loop, and are also placed directly into the poke commands. Variable names vice constant values were used in the poke commands to further increase speed. This is because it takes much more time to convert a constant to its floating point representation than it does to fetch the value of a variable [Ref. 6]. Due to the above modifications the 90 degree transition time was reduced to 4.8 seconds. Figure 19 is the same type drive routine as that of Figure 18 except that a four step drive loop is used. As would be expected the transit time was cut in half to 2.6 seconds due to the larger step size, however the operation of the drive motor became unstable. At this speed the time to serially deliver the four elements comprising a step approaches the time between steps of 5 msec. It is therefore possible for the inertia of the larger steps (1.9 vs. 0.8 degrees), to carry the rotor past the next intended position before the new step is set up. The drive motor would operate normally for a time and then suddenly begin to oscillate about some position.

```
*** ACCESSING AN ARRAY AS IN FIRST
*** TWO DESIGNS. TRANSIT TIME FOR
*** 90 DEG TRANSITION WAS REDUCED
             TO 4.8 SEC.
80
      EN = 60
      DE = 1
90
100
      SL = 4
      ML = 49280 + (SL * 16)
120
      DIM M(4)
140
160
      M1 = ML + 1
180
      M2 = ML + 2
200
      M3 = ML + 3
220
      M4 = ML + 4
240
      HI = 255
260
      L0 = 128
2000
      FOR H1 = 1 TO EN
2100
      POKE M1,HI:
      POKE M2,L0:
      POKE M3, HI:
      POKE M4,LO
      POKE M1,HI:
2200
      POKE M2, LO:
      POKE M3,LO:
      POKE M4,LO
2300
      POKE M1, HI:
      POKE M2,LO:
      POKE M3,LO:
      POKE M4, HI
      POKE M1, LO:
2400
      PCKE M2,LO:
      POKE M3,LO:
      POKE M4, HI
      POKE M1,LO:
2500
                      2700 POKE M1,LO:
      POKE M2, HI:
                            POKE M2, HI:
                            POKE M3, HI:
      POKE M3, LO:
      POKE M4,HI
                            POKE M4, LO
2600
      POKE M1,LO:
                      2800 POKE M1,LO:
      POKE M2, HI:
                            POKE M2, LO:
      POKE M3, LO:
                            POKE M3, LO:
                           POKE M4,HI
      POKE M4,LO
```

*** THIRD DRIVE DESIGN USING A/D
*** CARD. HERE EACH DRIVE STEP HAS
*** MEMORY ADDRESS ASSIGNED VICE

Figure 18. 4.8 Second Eight Step Drive Loop

```
*** TRANSITION TIME FOR THIS DESIGN ***
     WAS ONLY 2.6 SEC, HOWEVER THE
     DRIVE MOTOR OPERATION BECAME
              UNRELIABLE.
80
      EN = 60
90
      DE = 1
100
      SL = 4
120
      ML = 49280 + (SL * 16)
140
      DIM M(4)
160
      M1 = ML + 1
180
      M2 = ML + 2
200
      M3 = ML + 3
220
      M4 = ML + 4
240
      HI = 255
260
      L0 = 128
2000
      FOR H1 = 1 TO EN
2100
      POKE M1,LO:
      POKE M2, HI:
      POKE M3, HI:
      POKE M4,LO
2200
      POKE M1,LO:
      POKE M2, HI:
      POKE M3, LO:
      POKE M4,HI
2300
      POKE M1, HI:
      POKE M2, LO:
      POKE M3, LO:
      POKE M4, HI
2400 POKE M1.HI:
      POKE M2, LD:
      POKE M3, HI:
      POKE M4.LO
2900
      NEXT
```

THIS DRIVE DESIGN USES ONLY

*** FOUR DRIVE STEPS PER LOOP. THE

Figure 19. 2.6 Second Four Step Drive Loop

Figure 20 is a drive routine developed to take advantage of the fact that only one of the four step elements changes from one step to the next in an eight step loop. Only the step element that changed was sent to the drive motor. This routine also proved to be highly unstable and was discarded.

The eight step loop of Figure 18 was finally chosen for use in the main sun tracking program because of its speed, stability, and smoother operation. The four step loop even when stabilized by adding delays between the steps still produced a jerky drive motion, while the smaller 0.8 degree steps of the eight step loop caused the motion to smooth out.

C. DESIGN OF THE SIGNAL INPUT ROUTINES

To control the system the Apple computer must be capable of taking in the sensor and limit switch signals as well as driving the motors. To do this the PEEK command in conjunction with the A/D card is used. The analog voltage values of the signals are delivered directly to eight channels of the A/D card.

The card then changes the analog values into their digital equivalents for use by the computer. The range of digital voltage input values is the same as the output value range discussed earlier (0-255 digital for -5V to +5V analog). The PEEK command is of the form VARIABLE NAME = PEEK (A/D)

```
*** IN THIS DRIVE DESIGN AN ***

*** ATTEMPT WAS MADE TO TAKE ***

*** ADVANTAGE OF THE FACT THAT ***

*** ONLY ONE OF FOUR LEVELS CHANGE***

*** PER STEP. SO ONLY THE CHANGING***

*** ELEMENT IS POKED EACH STEP. ***

THIS DESIGN PROVED TO BE ***

*** COMPLETELY UNSTABLE AS A DRIVE***

ROUTINE. ***
```

```
390
    FOR K = 1 TO 30
400
    POKE 49344,255
405
    PDKE 49345,128
    POKE 49346,255
410
415
    POKE 49347,128
    POKE 49346,128
420
425
    POKE 49347,255
430 POKE 49344,128
435
    POKE 49345,255
440
    POKE 49347,128
445 POKE 49346,255
450 POKE 49345,128
460
    NEXT K
```

Figure 20. Drive Routine Varying Single Step Element

CARD CHANNEL ADDRESS). The digital value found at the indicated address is assigned to the variable. With this particular A/D card the PEEK command must be given twice in order to get the correct value. The first time the command is issued the old value stored in the channel is returned, the second time the new sampled value is delivered. Figure 21 is a routine designed to input sensor and limit switch values, and display them on the system monitor.

In this routine the base address M is calculated in line 110 and incremented by the Do Loop counter I to get the eight input channel addresses of the A/D card. These are the same addresses as the eight used for outputting the drive steps. The command used (PEEK or POKE) determines whether the particular address is used for input or output. The input output wiring to and from the A/D card is physically separate (see Figure 14), it is only on the internal computer bus that the the same lines are used for input and output. The table below is included for a quick reference to the A/D card channel use.

CARD ADDRESS	CHANNEL	INPUT	DRIVE STEP ELEMENT
USING SLOT 4	NUMBER	USE	
49345	01	ES	н1
49 34 6	02	WS	H2
49347	03	US	нз

```
*** THIS ROUTINE WAS THE FIRST ***

*** ATTEMPT TO UTILIZE THE INPUT ***

*** SIDE OF THE A/D CARD. ALL ***

*** SENSOR AND LIMIT SWITCH VALUES***

*** ARE OBTAINED BY USING THE DO ***

*** LOOP. THE VALUES ARE THEN ***

OUTPUT TO THE SCREEN. THIS ***

*** ROUTINE WAS LATER USED TO ***

*** OBTAIN SENSOR THRESHOLD VALUES***

*** FOR USE IN THE MAIN PROGRAM ***

DESIGN. ***
```

```
100
    DIM X(8)
110
    M = 49280 + (4 * 16)
115
    HOME
120
    FOR I = 1 TO 8
130
    FOR J = 1 TO 2
140
    X(I) = PEEK (M + I)
    NEXT J
150
160
    NEXT I
200
    VTAB 21: PRINT TAB( 6) "US≈"X(3)"
    UL="X(7)
    VTAB 22: PRINT TAB( 3)"WS≈"X(2)"
210
     ES="X(1)" WL="X(6)" EL="X(5)
220
    VTAB 23: PRINT TAB( 6)"DS≈"X(4)"
     DL="X(8)
400
    FOR A = 1 TO 100: NEXT
410 GDTD 120
```

Figure 21. Display Routine

49348	04	DS	Н4
49349	05	EL	Vl
49350	06	WL	V2
49351	07	UL	V3
49352	0.8	DL	V4

The J Do Loop executes the PEEK command twice for each of the eight channels determined by the I loop, and assigns the proper value to the array variable X(I). Lines 200-220 provide the screen output, and line 400 is a 0.1 second delay loop added for display clarity.

D. DETERMINATION OF SENSOR VALUES

The next step in the design of the software was to use the display routine to determine the proper sensor threshold values for use in the sun tracking routine. With the routine running the sensors were exposed to a variety of conditions, and the values below were determined.

CONDITION	VALUE		
	ANALOG	DIGITAL	
Completely Dark	0 V	128	
Exposed to Desk Lamp	0.08 V	130	
Facing Away From Sun on Bright Day	0.12 V	131	
Directly at Bright Sun	. 2.34 V	188	
4 Sensors Balanced on Bright Sun	0.47 V	140	
4 Sensors Balanced on Hazy Sun	0.16 V	132	
4 Sensors Balanced on Cloud Covered Sun	0.08 V	130	

From the above information it was determined that a cutoff value to use for determining if the sun were out or not would be 130 or less. Limit switch values were determined to be 128 = 0V if not depressed, and 255 = +5V if depressed.

E. FLASHLIGHT FOLLOW ROUTINE

Once the drive and display routines had been developed and expected sensor values had been determined, the next step was to combine them into a working routine. The flashlight follow routine (Appendix A), was developed as an intermediate step before attacking the more complex sun tracking routine. In this routine the sensors are checked continuously to see if any go above the threshold value of 130. If any do then the appropriate drive loop is run. There are four eight step drive loops, one for each direction of travel (UP,DOWN,EAST,WEST). It should be pointed out that by running the loop in the reverse direction the motor will also run in the opposite direction. Table 5 lists the eight step loops for each direction of travel.

At the beginning of each drive loop the four A/D card channels to poke the steps to are determined by adding the appropriate channel value to the base address. For instance L1 = M+5 assigns the address of channel 5 to the variable L1, so that L1-L4 have the addresses of channels 5-8. The L5 and L6 variables are assigned the channel addresses of the limit switch that the system is being driven toward, and the sensor that is involved respectively. Next the limit switch

TABLE 5
EIGHT STEP DRIVE LOOPS

	Н	DRIZON	ITAL MOTOR	VERTIC	CAL MOTOR
	A/D	CARD	CHANNELS 1-4	A/D CARD	CHANNELS 5-8
		EAST	WEST	UP	DOWN
STEP	1:	1010	0010	0010	1010
STEP	2:	1000	0110	0110	1000
STEP	3:	1001	0100	0100	1001
STEP	4:	0001	0101	0101	0001
STEP	5:	0101	0001	0001	0101
STEP	6:	0100	1001	1001	0100
STEP	7:	0110	1000	1000	0110
STEP	8:	0010	1010	1010	0010

and sensor values are checked to be sure that both are still within limits. If not the loop is exited, and the program returns to the original sensor checking loop. If both values are still within limits the first two steps of the drive loop are sent to the appropriate drive motor. The limit switch and sensor are again checked, and either the loop is exited or two more steps are taken. This checking and stepping continues until the sensor goes below threshold (the flashlight is removed), or the system runs into the stops (the limit switch). Each of the four drive loops works the same, the only difference is the address values assigned to L1-L6.

Now that all the drive loop, sensor inputs, and limit switches had been successfully combined, the next step was to develop the sun tracking routine.

F. SUN TRACKING PROGRAM

The final step in the design of the controlling software was to develop the actual sun tracking program (Appendix B). Since the program listing is well remarked, only the main points of this program will be discussed. The program consists of four main parts. The first is a tracker calibration routine, the second is a sun location routine, the third is a sun tracking routine, and the fourth is a cloud cover waiting routine.

The calibration routine is included because the tabs that depress the various limit switches have a tendency to

become misaligned. This is important because degrees longitude, and degrees elevation are displayed on the screen. If the system is no longer limited to true east and true west or horizontal and vertical, these output values will be incorrect. When the tracker is calibrated properly it is limited to a transition of 180 degrees between the east and west limit switches, and 90 degrees between the up and down switches. Due to the gearing between the motors and drive structures of the tracker, approximately 1005 steps are required for the east to west, and 510 for the up down transitions. This routine starts the tracker in an upright east facing position, counts the steps required to transition to the west facing and down positions, and then returns to the east facing upright start position. The step count values are checked and if they are outside predetermined limits, an appropriate message is displayed on the screen. The step count values obtained are also divided by the number of degrees in their particular transition to get a steps per degree value that will be used for degrees longitude and elevation calculations in later routines.

It should be noticed that two vice four drive loops are used for the different drive requirements in the sun tracking program. As can be seen in Table 5 the east and down drive loops are the same, as are the west and up loops. Only the channel numbers of the step output lines are different. If the step and sensor/limit switch channel

addresses are determined in controlling logic external to the drive loops, and are assigned to common variables, a single drive loop can be used for two directions (EAST/DOWN or WEST/UP).

The sun location routine is used to obtain a rough lock on before passing control to the sun tracking routine.

Starting from the east facing upright position, the system is moved toward the west. The up sensor values are checked and if they remain the same or increase the sensor is going toward the sun. When the values begin to decrease a counter is set and if the old sensor reading is less than the new value three times in a row, the tracker moves back to the position of the first decrease. If the readings are the same the counter stays the same, if the new reading is more than the last the counter is reset. These counters are necessary because the sensor values tend to vary by =1 quite often. If there are three successive decreases then random value fluctuations can be ruled out.

When the tracker has moved back to the point of maximum sun intensity (the first sensor value decrease), it begins an upward transition. During this transition the up and down values are continually checked. When their values are the same the sun's intensity is equal on both sensors, thus the tracker is locked onto the sun's elevation. Control is now passed to the sun tracking routine. If lock-on is not

achieved in either the horizontal or the vertical transitions, an appropriate message is printed on the screen.

The tracking routine's main function is to ensure that the UP/DOWN sensor values are the same, and that the EAST/WEST sensors are also balanced. The four values do not necessarily have to be the same, only each pair must balance. When this is achieved then the tracker is locked onto the sun. When one sensor of a pair is not equal to the other a counter is set, if the sensors remain unbalanced for a count of five, two drive steps are taken in the direction necessary to rebalance the sensor pair. Again the counter is necessary due to the sensor outputs tendency to vary about a value by ±1. If clouds cover the sun, its intensity becomes too low for the sensors to track, and control is passed to the cloud cover routine.

The cloud cover routine continually checks the up sensor to determine if it goes back above the threshold value (clouds no longer cover the sun). If it does, control is returned to the tracking routine. If the value remains below threshold a counter is incremented once each second. At 10 minutes or a counter value of 600, control is passed back to the sun location routine, which places the tracker back in startup position and waits for the sun to reappear. The 10 minute limit is necessary because after prolonged cloud cover, the sun will move out of position and relocation will be necessary.

As mentioned the program listing (Appendix B), is well remarked and can be traced through for program specifics.

IV. CONCLUSIONS AND RECOMMENDATIONS

Once completed the system performed well with the new computer. The screen/keyboard interaction now available expands the possible system uses. Some possible system enhancements can be made.

A clock card could be added to the Apple that would bring a real time capability to the system. By being able to determine the date and time, a series of calculations could be performed that would give the sun's location.

Reference 1 in its chapter on "Terrestrial Solar Radiation," describes the procedure in some detail. Once latitude and elevation values had been calculated for the sun, the tracker could be placed in that position and control passed to the sun tracking routine. This would do away with the need for the sun location routine, and make the initial lock-on much faster. Another use would be in the cloud cover routine where the tracker's position could be updated by the same calculations. Since the tracker's position could now be automatically updated, the system would not have to return to the start up position after the 10 minute time out.

Another enhancement would be to assemble the drive routines in order to increase drive speed. The assembled code would be internal to the system thus preserving the easier to interpret Basic code for user understanding. The

steps could be delivered to the motors much more rapidly than in the Basic form, thus preventing the instability problem encountered earlier with the four step drive loop.

Another idea would be to use the tracker as a positioning device for a larger tracking system. The longitude and
elevation position information that is now displayed on the
screen could also be sent to a much larger device, thus
eliminating the need for sensors on that device. Drive motor
commands could also be sent to power amplification devices
that would drive the larger positioning motors.

A card could be developed and built to be placed inside the Apple computer that would replace the circuit board currently inside the A/I box. This would reduce the need for much of the current external wiring, as the signals would interface the computer via the internal bus. With the circuit board out of the A/I box the power transistors could be relocated into a much smaller box which would be mounted under the tracker. This would produce a much more compact system.

One last recommendation is to develop a power supply to deliver all the necessary voltages to the system. This would do away with the current requirement for three separate external power supplies.

APPENDIX A

FLASHLIGHT FOLLOW ROUTINE

```
"MAIN ROUTINE"
10
      REM
20
      REM
           "FLASHLIGHT FOLLOW"
30
      REM
          "ROUTINE"
40
      REM
50
      REM
           "SET HIGH AND LOW"
      REM
60
           "MOTOR DRIVE VALUES"
      REM
70
          "FOR DRIVE ROUTINES"
80
      REM
      REM
90
      HI = 255
100
      L0 = 128
110
120
      REM
           "SET LIMIT SWITCH AND"
130
      REM
      REM "SENSOR THRESHOLDS"
140
150
      REM
      THR = 130
160
170
      CO = 160
      REM
180
           "DETERMINE MEMORY"
190
      REM
200
           "START ADDRESS FOR"
      REM
           "PROGRAM USE"
210
      RE!
220
      REM
      M = 49280 + (4 * 16)
230
240
      REM
250
           "CHECK SENSOR VALUES"
      REM
           "TO DETERMINE IF ANY"
260
      REM
           "ARE ABOVE THRESHOLD"
270
      REM
280
      REM
      FOR I = 1 TO 4
290
      FOR J = 1 TO 2
300
      X(I) = PEEK (M + I)
310
320
      NEXT J
330
      NEXT I
340
      REM
      REM "IF ANY ABOVE"
350
360
      REM
           "THRESHOLD GO TO"
           "APPROPRIATE DRIVE"
370
      REM
380
      REM
           "SUBROUTINE"
390
      REM
                              GOTO 2000
      IF X(3) > = THR THEN
400
      IF X(4) > = THR THEN
                              GOTO 3000
410
                              GOTO 4000
420
      IF X(1) > = THR THEN
      IF X(2) > = THR THEN
                              60TD 5000
430
440
      GOTO 290
450
      REM
```

```
"UP DRIVE SUBROUTINE"
2000
      REM
2010
      REM
           "INITIALIZE VALUES"
2020
      REM
2030
      REM
           "TO BE USED IN"
2040
      REM "SUBROUTINE"
      REM
2050
2060
      L1 = M + 5:
      L2 = M + 6:
      L3 = M + 7:
      L4 = M + 8:
      L5 = M + 7:
      L6 = M + 3
2070
      REM
2080
      REM
          "DETERMINE IF ARM"
2090
      REM
          "IS AGAINST UPPER"
2100
      REM
          "LIMIT SWITCH OR IF"
           "UPPER SENSOR IS"
      REM
2110
      REM
           "STILL ABOVE THRES-"
2120
      REM
          "HOLD VALUE"
2130
      REM
2140
      Y1 = PEEK (L5):
2150
      Y1 = PEEK (L5):
      Y2 =
            PEEK (L6):
      Y2 = PEEK (L6)
2160
      REM
           "IF SWITCH DEPRESSED"
2170
      REM
          "OR IF SENSOR BELOW"
2180
      REM
      REM "THRESHOLD RETURN TO"
2190
          "MAIN LOOP"
2200
      REM
2210
      REM
2220
      IF (Y1 > = CQ) OR (Y2 < = THR) THEN GOTO 280
2230
      REM
2240
      REM
           "PLUG IN (POKE)"
2250
      REM "VALUES FOR FIRST"
      REM "TWO 0.9 DEG. STEPS"
2260
2270
      REM
      POKE L1, LO:
2280
      POKE L2, LO:
      POKE L3.HI:
      POKE L4, LO
2290
      POKE L1,LO:
      POKE L2, HI:
      POKE L3, HI:
      POKE L4,L0
2300
      REM
2310
          "RECHECK LIMIT"
      REM
2320
      REM
           "SWITCH AND SENSOR"
2330
      REM
          "VALUES"
2340
      REM
2350
      Y1 = PEEK (L5):
      Y1 ≈ PEEK (L5):
```

```
Y2 = PEEK (L6):
      Y2 = PEEK (L6)
     IF (Y1 > = C0) OR (Y2 < = THR) THEN GOTO 280
2360
2370
     REM
           "MOTOR SETPS THREE"
2380
     REM
          "AND FOUR"
2390
     REM
2400 REM
    POKE L1.LO:
2410
      POKE L2, HI:
      POKE L3, LO:
      POKE L4, LO
     POKE L1,LO:
2420
      POKE L2, HI:
      POKE L3, LO:
      POKE L4, HI
2430
      REM
          "RECHECK THRESHOLD"
      REM
2440
      REM "VALUES"
2450
2460
      REM
      Y1 = PEEK (L5):
2470
      Y1 = PEEK (L5):
      Y2 = PEEK (L6):
      Y2 = PEEK (L6)
      IF (Y1 > = C0) OR (Y2 < = THR) THEN GOTO 280
2480
     REM
2490
      REM "MOTOR STEPS FIVE"
2500
     REM "AND SIX"
2510
2520
      REM
2530
      POKE L1,L0:
      POKE L2, LO:
      POKE L3,L0:
      POKE L4,HI
2540 POKE L1, HI:
      POKE L2, LO:
      POKE L3,L0:
      POKE L4,HI
      REM
2550
           "RECHECK THRESHOLD"
2560
      REM
           "VALUES"
2570
      REM
      REM
2580
      Y1 = PEEK (L5):
2590
       Y1 = PEEK (L5):
       Y2 = PEEK (L6):
       Y2 = PEEK (L6)
      IF (Y1 > = C0) OR (Y2 < = THR) THEN GOTO 280
 2600
 2610
      REM
            "MOTOR STEPS SEVEN"
      REM
 2620
      REM "AND EIGHT"
 2630
 2640
      REM
 2650 POKE L1, HI:
       POKE L2, LO:
```

```
POKE L3, LO:
      POKE L4,LO
      POKE L1, HI:
2660
      POKE L2,L0:
      POKE L3.HI:
      POKE L4,L0
      GOTO 2060
2670
           "DOWN DRIVE ROUTINE"
3000
      REM
      REM
3010
           "INITIALIZE VALUES"
3020
      REM
           "TO BE USED IN"
3030
      REM
          "SUBROUTINE"
3040
      REM
      REM
3050
      L1 = M + 5:
3060
      L2 = M + 6:
      L3 = M + 7:
      L4 = M + 8:
      L5 = M + 8:
      L6 = M + 4
3070
      REM
           "DETERMINE IF ARM"
3080
      REM
           "IS AGAINST DOWN"
3090
      REM
            "LIMIT SWITCH OR IF"
3100
      REM
            "DOWN SENSOR IS"
      REM
3110
           "STILL ABOVE THRES-"
      REM
3120
           "HOLD VALUE"
3130
      REM
3140
      REM
      Y1 = PEEK (L5):
3150
             PEEK (L5):
       Y1 =
       Y2 = PEEK (L6):
       Y2 = PEEK (L6)
      REM
3160
            "IF SWITCH DEPRESSED"
      REM
3170
            "OR IF SENSOR BELOW"
3180
      REM
            "THRESHOLD RETURN TO"
3190
      REM
            "MAIN LOOP"
      REM
3200
 3210
       REM
       IF (Y1 > = C0) OR (Y2 < = THR) THEN GOTO 280
 3220
       REM
 3230
            "PLUG IN (POKE)"
       REM
 3240
            "VALUES FOR FIRST"
       REM
 3250
            "TWO 0.9 DEG. STEPS"
       REM
 3260
 3270
       REM
       POKE L1, HI:
 3280
       POKE L2, LO:
       POKE L3,HI:
       POKE L4.LO
 3290 POKE L1,HI:
       POKE L2, LO:
       POKE L3, LO:
       POKE L4,L0
```

```
3300
     REM
     REM
          "RECHECK LIMIT"
3310
3320 REM "SWITCH AND SENSOR"
3330
     REM "VALUES"
3340
     REM
3350
     Y1 = PEEK (L5):
      Y1 = PEEK (L5):
      Y2 = PEEK (L6):
      Y2 = PEEK (L6)
      IF (Y1 \rightarrow = C0) OR (Y2 \leftarrow = THR) THEN GOTO 280
3360
     REM
3370
     REM
            "MOTOR STEPS THREE"
3380
     REM "AND FOUR"
3390
3400
     REM
    POKE L1,HI:
3410
      POKE L2, LO:
      POKE L3, LO:
      POKE L4,HI
3420 POKE L1,L0:
      POKE L2, LO:
      POKE L3, LD:
      POKE L4,HI
3430
     REM
     REM "RECHECK THRESHOLD"
3440
          "VALUES"
3450
    REM
3460
     REM
3470
     Y1 = PEEK (L5):
      Y1 = PEEK (L5):
      Y2 = PEEK (L6):
      Y2 = PEEK (L6)
      IF (Y1 > = C0) OR (Y2 < = THR) THEN GOTO 280
3480
3490
     REM
     REM "MOTOR STEPS FIVE"
3500
3510 REM "AND SIX"
3520 REM
     POKE L1,LO:
3530
      POKE L2, HI:
      POKE L3, LO:
      POKE L4,HI
     POKE L1,L0:
3540
      POKE L2, HI:
      POKE L3,LO:
      POKE L4,LO
3550
     REM
3560
      REM
           "RECHECK THRESHOLD"
      REM "VALUES"
3570
3580
      REM
3590
      Y1 = PEEK (L5):
      Y1 = PEEK (L5):
      Y2 = PEEK (L6):
      Y2 = PEEK (L6)
```

```
IF (Y1 > = C0) OR (Y2 < = THR) THEN GOTO 280
3600
     REM
3610
           "MOTOR STEPS SEVEN"
      REM
3620
           "AND EIGHT"
      REM
3630
      REM
3640
      POKE L1, LO:
3650
      POKE L2, HI:
      POKE L3, HI:
      POKE L4, LO
3660 POKE L1.LO:
      POKE L2, LO:
      POKE L3, HI:
      POKE L4, LO
      60TO 3060
3670
            "EAST DRIVE ROUTINE"
      REM
4000
      REM
4010
           "INITIALIZE VALUES"
4020
      REM
           "TO BE USED IN"
4030
      REM
           "SUBROUTINE"
4040
      REM
      REM
4050
      L1 = M + 1:
4060
      L2 = M + 2:
      L3 = M + 3:
      L4 = M + 4:
      L5 = M + 5:
      L6 = M + 1
4070
      REM
            "DETERMINE IF ARM"
 4080
      REM
            "IS AGAINST EAST"
 4090
      REM
           "LIMIT SWITCH OR IF"
 4100
      REM
           "EAST SENSOR IS"
      REM
4110
            "STILL ABOVE THRES-"
      REM
 4120
           "HOLD VALUE"
       REM
 4130
       REM
 4140
       Y1 = PEEK (L5):
 4150
       Y1 = PEEK (L5):
       Y2 =
             PEEK (L6):
       Y2 =
             PEEK (L6)
       REM
 4160
            "IF SWITCH DEPRESSED"
 4170
       REM
            "OR IF SENSOR BELOW"
       REM
 4180
            "THRESHOLD RETURN TO"
 4190
       REM
            "MAIN LOOP"
       REM
 4200
 4210
       REM
       IF (Y1 > = C0) QR (Y2 < = THR) THEN GOTO 280
 4220
       REM
 4230
            "PLUG IN (POKE)"
       REM
 4240
             "VALUES FOR FIRST"
 4250
       REM
             "TWO 0.9 DEG. STEPS"
 4260
       REM
 4270
       REM
 4280
      POKE L1,HI:
```

```
POKE L2, LO:
     POKE L3,HI:
      POKE L4,L0
4290 POKE L1,HI:
      POKE L2, LO:
      POKE L3, LO:
      POKE L4,L0
      REM
4300
           "RECHECK LIMIT"
     REM
4310
           "SWITCH AND SENSOR"
4320 REM
           "VALUES"
4330
     REM
4340
      REM
      Y1 = PEEK (L5):
4350
      Y1 = PEEK (L5):
      Y2 = PEEK (L6):
      Y2 = PEEK (L6)
      IF (Y1 > = C0) OR (Y2 < = THR) THEN GOTO 280
4360
4370
      REM
            "MOTOR STEPS THREE"
4380
      REM
4390 REM
           "AND FOUR"
4400
      REM
4410
      POKE L1,HI:
      POKE L2, LO:
      POKE L3, LO:
      POKE L4,HI
      POKE L1, LO:
4420
      POKE L2, LO:
      POKE L3, LO:
      POKE L4,HI
4430
      REM
            "RECHECK THRESHOLD"
4440
      REM
            "VALUES"
      REM
4450
4460
      REM
      Y1 = PEEK (L5):
4470
            PEEK (L5):
       Y1 =
       Y2 = PEEK (L6):
       Y2 = PEEK (L6)
       IF (Y1 > = C0) OR (Y2 < = THR) THEN GOTO 280
4480
4490
      REM
            "MOTOR STEPS FIVE"
4500
      REM
            "AND SIX"
 4510
      REM
 4520
       REM
       POKE L1, LO:
 4530
       POKE L2, HI:
       POKE L3, LO:
       POKE L4,HI
       POKE L1, LO:
       POKE L2, HI:
       POKE L3, LO:
       POKE L4, LO
 4550
       REM
```

```
"RECHECK THRESHOLD"
4560
      REM
4570
           "VALUES"
      REM
4580
      REM
      Y1 = PEEK (L5):
4590
      Y1 = PEEK (L5):
      Y2 = PEEK (L6):
      Y2 = PEEK (L6)
      IF (Y1 > = C0) OR (Y2 < = THR) THEN GOTO 280
4600
4610
      REM
           "MOTOR STEPS SEVEN"
4620
      REM
4630
      REM
           "AND EIGHT"
4640
      REM
      POKE L1,L0:
4650
      POKE L2, HI:
      POKE L3, HI:
      POKE L4, LO
      POKE L1, LO:
4660
      POKE L2, LO:
      POKE L3, HI:
      POKE L4,LO
4670
      GOTO 4060
5000
           "WEST DRIVE ROUTINE"
      REM
5010
      REM
5020
      REM
           "INITIALIZE VALUES"
5030
      REM
           "TO BE USED IN"
5040
           "SUBROUTINE"
      REM
5050
      REM
      L1 = M + 1:
5060
      L2 = M + 2:
      L3 = M + 3:
      L4 = M + 4:
      L5 = M + 6:
      L6 = M + 2
5070
      REM
           "DETERMINE IF ARM"
5080
      REM
           "IS AGAINST WEST"
5090
      REM
           "LIMIT SWITCH OR IF"
5100
      REM
           "WEST SENSOR IS"
5110
      REM
5120
      REM
           "STILL ABOVE THRES-"
5130
      REM
           "HOLD VALUE"
5140
      REM
5150
      Y1 = PEEK (L5):
      Y1 ≈ PEEK (L5):
      Y2 ≈ PEEK (L6):
      Y2 = PEEK (L6)
5160
      REM
           "IF SWITCH DEPRESSED"
5170
      REM
5180
      REM
           "OR IF SENSOR BELOW"
5190
      REM
           "THRESHOLD RETURN TO"
5200
           "MAIN LOOP"
      REM
      REM
5210
```

```
IF (Y1 > = CQ) OR (Y2 < = THR) THEN GOTO 280
5220
5230
     REM
5240 REM
          "PLUG IN (POKE)"
          "VALUES FOR FIRST"
5250
     REM
5260 REM
           "TWO 0.9 DEG. STEPS"
5270
     REM
5280 POKE L1,L0:
     POKE L2, LO:
     POKE L3,HI:
     POKE L4, LO
     POKE L1.LO:
5290
     POKE L2, HI:
     POKE L3, HI:
     POKE L4,L0
5300
     REM
           "RECHECK LIMIT"
5310
     REM
5320 REM
           "SWITCH AND SENSOR"
5330 REM
           "VALUES"
5340 REM
5350
     Y1 = PEEK (L5):
      Y1 = PEEK (L5):
      Y2 ≈ PEEK (L6):
      Y2 = PEEK (L6)
      IF (Y1 > = C0) OR (Y2 < = THR) THEN GOTO 280
5360
5370
     REM
5380 REM "MOTOR SETPS THREE"
5390 REM
           "AND FOUR"
5400 REM
5410 POKE L1,L0:
      POKE L2, HI:
      POKE L3.LO:
      POKE L4, LO
    POKE L1, LO:
5420
      POKE L2, HI:
      POKE L3, LO:
      POKE L4,HI
5430 REM
           "RECHECK THRESHOLD"
5440
     REM
           "VALUES"
5450
     REM
     REM
5460
     Y1 = PEEK (L5):
5470
      Y1 = PEEK (L5):
      Y2 = PEEK (L6):
      Y2 = PEEK (L6)
5480
     IF (Y1 > = C0) OR (Y2 < = THR) THEN GOTO 280
5490 REM
5500
     REM
           "MOTOR STEPS FIVE"
     REM
          "AND SIX"
5510
5520
     REM
5530
     POKE L1,L0:
      POKE L2,L0:
```

```
POKE L3, LD:
      POKE L4, HI
      POKE L1, HI:
5540
      POKE L2, LO:
      POKE L3, LO:
      POKE L4, HI
      REM
5550
          "RECHECK THRESHOLD"
      REM
5560
      REM "VALUES"
5570
5580
      REM
      Y1 = PEEK (L5):
5590
      Y1 = PEEK (L5):
      Y2 = PEEK (L6):
      Y2 = PEEK (L6)
      IF (Y1 > = C0) OR (Y2 < = THR) THEN GOTO 280
5600
     REM
5610
           "MOTOR STEPS SEVEN"
      REM
5620
      REM "AND EIGHT"
5630
     REM
5640
     POKE L1,HI:
5650
      POKE L2, LO:
      POKE L3, LO:
      POKE L4,LO
5660 POKE L1, HI:
      POKE L2, LO:
      POKE L3, HI:
      POKE L4, LO
5670 GOTO 5060
```

APPENDIX B

MAIN SUN TRACKING PROGRAM

```
100 REM **************************
110
    REM ** THE FOLLOWING IS A PROGRAM FOR SUN **
120
    REM ** TRACKING. IT CONSISTS OF FOUR MAIN **
130
    REM ** PARTS. (1) A SYSTEM CALIBRATION
140
    REM ** ROUTINE (2) A SUN LOCATION ROUTINE **
150
    REM ** (3) A SUN TRACKING ROUTINE (4) AND **
    REM ** A CLOUD COVER WAIT ROUTINE.
160
170
    REM ************
180
    REM
190
    REM
200
    REM **************
210
    REM ***
                 CALIBRATION ROUTINE
220
    REM ***************
230
    REM
240
    REM
250
    REM *** CLEAR SCREEN ***
260
    HOME
270
    REM
280
    REM *** PRINT HEADER ON SCREEN ***
290
    REM
    VTAB 2: PRINT "THE NUMBER OF 0.9 DEG. STEPS REQUIRED"
300
    VTAB 3: PRINT "TO DRIVE THE SYSTEM THROUGH A COMPLETE"
310
    VTAB 4: PRINT "HORIZONTAL OR VERTICAL TRANSITION ARE"
320
    VTAB 5: PRINT "COUNTED AND USED TO DETERMINE TRACKING"
330
    VTAB 6: PRINT "POSITION, AND CHECK SYSTEM CALIBRATION"
340
341
    REM
342
    REM *** DUE TO GEARING DOWN OF
343
    REM *** THE DRIVE MOTORS APPROX
344
    REM *** 500 0.9DEG STEPS ARE
345
    REM *** REQUIRED TO TRANSITION 90 ***
346
    REM *** DEGREES.
347
    REM
350
    REM
360
    REM *** CALCULATE MEMORY LOCATION ***
370
    REM *** POINTER FOR A/D CARD.
380
    REM
390
    M = 49280 + (4 + 16)
400
    REM
    REM *** SET VALUE TO DETERMINE IF ***
410
420
    REM *** LIMIT SWITCH IS DEPRESSED ***
430
    REM
440 \quad CO = 160
450 REM
```

```
REM *** SET VALUES FOR STEP POKES ***
460
470
     REM *** TO A/D CARD, 127=0V 255=5V ***
480
     REM
     HI = 255
490
     LO = 127
500
     REM
510
     REM *** INITIALIZE COUNTERS TO BE ***
520
530
     REM *** USED IN SUN LOCATION RTN. ***
     REM
540
     AB = 0:AC = 0
550
560
     REM
     REM *** THESE TWO CALLS INITIALIZE***
570
     REM *** THE SEEKER BY PLACING IT
580
590
     REM *** IN AN UPRIGHT EAST FACING ***
600
     REM *** POSITION
610
     REM
     VTAB 8: PRINT "PLACE IN UPRIGHT POSITION"
620
630
     REM
640
     REM *** PASS TO DRIVE ROUTINES THE***
     REM *** MEMORY LOCATIONS OF THE
650
     REM *** A/D CARD TO POKE STEP
660
670
     REM *** VALUES TO (L1-L4). ALSO
     REM *** MEMORY LOCATION OF LIMIT
680
690
     REM *** SWITCH TO CHECK FOR
700
     REM *** DEPRESSION AT END OF RUN
     REM *** (L5), AND PASS VALUE TO
710
720
     REM *** TO TELL ROUTINE IF IT IS
     REM *** DRIVING UP OR EAST (L6)
730
     REM
740
750
     L1 = M + 5:
     L2 = M + 6:
     L3 = M + 7:
     L4 = M + 8:
     L5 = M + 8:
     L6 = 1
760
     GOTO 1810
770
     REM
     REM *** DRIVE TO EAST. L1-L6 SAME ***
780
790
     REM *** USE AS ABOVE.
800
     REM
810
     VTAB 8: PRINT "SET FACING EAST
820
     L1 = M + 1:
     L2 = M + 2:
     L3 = M + 3:
     L4 = M + 4:
     L5 = M + 5:
     L6 = 2
830
     GOTO 1810
840
     REM
850
     REM *** THESE TWO CALLS CAUSE THE ***
860
     REM *** NUMBER OF STEPS FOR ONE
```

```
870
     REM *** TRANSITION WEST AND ONE
     REM *** TRANSITION TO THE DOWN
880
890
     REM *** POSITION TO BE COUNTED
900
     REM
910
     VTAB 8: PRINT "WEST COUNTING RUN"
920
     REM
930
     REM *** EAST COUNTING RUN. PASS
940
     REM *** TO DRIVE ROUTINE STEP
950
     REM *** POKE MEMORY LOCATIONS
960
     REM *** (L1-L4), LIMIT SWITCH (L5) ***
970
     REM *** WHERE TO RETURN WHEN
980
     REM *** FINISH COUNTING RUN (L6)
990
     REM *** AND INDICATOR OF WEST OR
1000
     REM *** UP COUNTING RUN (L7).
1010
     REM
1020
     L1 = M + 1:
      L2 = M + 2:
      L3 = M + 3:
      L4 = M + 4:
      L5 = M + 6:
      L6 = 1:
      L7 = 200
1030
      GOTO 2320
1040
     REM
     REM *** PRINT OUT NUMBER OF STEPS ***
1050
1060
      REM *** FOR EAST TO WEST TRANSI-
1070
     REM *** TION (LN), AND STEPS PER
     REM *** DEGREE (LD).
1080
1090
      REM
      VTAB 14: PRINT "LONGITUDE COUNT="LN
1100
     LD = LN / 180
1110
1120
     REM
1130
      REM *** LIMIT SCREEN DISPLAY TO
      REM *** TWO DECIMAL POINT ACCURACY***
1140
1150
      REM
     LD = INT (LD * 100 + .5) / 100
1160
      VTAB 18: PRINT "STEPS/DEG. LONG="LD
1170
1180
      REM .*** COUNTING RUN FROM UPRIGHT ***
1190
1200
      REM *** TO DOWN POSITION
1210
      REM
1220
      VTAB 8: PRINT "VERT COUNTING RUN"
1230
     REM
      REM *** PASS SAME INFORMATION AS
1240
1250
      REM *** AS ABOVE TO DRIVE ROUTINE ***
      REM
1260
      L1 = M + 5:
1270
      L2 = M + 6:
      L3 = M + 7:
      L4 = M + 8:
      L5 = M + 7:
```

```
L6 = 2:
     L7 = 155
1280
      GOTO 2320
1290
     REM
     REM *** PRINTOUT SAME AS ABOVE
1300
1310
     REM *** FOR STEPS FROM UP TO DOWN ***
      REM *** POSITION (LT), AND STEPS ***
1320
      REM *** PER DEGREE (LE).
1330
1340
     REM
1350
      VTAB 15: PRINT "LATITUDE COUNT ="LT
1360
     LE = LT / 90
     LE = INT (LE * 100 + .5) / 100
1370
      VTAB 19: PRINT "STEPS/DEG. LAT ="LE
1380
1390
      REM
      REM *** THESE TWO CALLS RETURN
1400
1410
      REM *** THE SEEKER TO THE UPRIGHT ***
      REM *** AND EAST FACING POSITION
1420
      REM *** BEFORE GOING TO THE SUN
1430
1440
      REM *** LOCATION ROUTINE
1450
     REM
     VTAB 8: PRINT "RETURN TO START POSITION"
1460
1470 L1 = M + 5:
     L2 = M + 6:
     L3 = M + 7:
      L4 = M + 8:
     L5 = M + 8:
      L6 = 3
1480
      GOTO 1810
1490
     L1 = M + 1:
     L2 = M + 2:
     L3 = M + 3:
     L4 = M + 4:
     L5 = M + 5:
     L6 = 4
1500
      GOTO 1810
1510
     HOME
1520
      REM
     REM *** DETERMINE IF THE NUMBER
1530
1540
     REM *** OF STEPS FOR EACH TRANSI- ***
     REM *** TION IS OUT OF LIMITS, IF ***
1550
     REM *** IT IS PRINT APPROPRIATE
1560
1570
     REM *** ERROR MESSAGE.
1580
     REM
1590
     IF (LN < 990) OR (LN > 1020) THEN VTAB 10:
      PRINT "HORIZONTAL PARAMETERS OUT OF RANGE": VTAB 11:
      PRINT "CHECK LIMIT SWITCH ALLIGNMENT": GOTO 1660
      IF (LT < 490) OR (LT > 520) THEN VTAB 12:
1600
      PRINT "VERTICAL PARAMETERS OUT OF RANGE": VTAB 13:
      PRINT "CHECK LIMIT SWITCH ALLIGNMENT": GOTO 1660
1610 GOTO 5090
1620 REM
```

```
REM *** DETERMINE IF WANT TO
1630
      REM *** CONTINUE WHEN OUT OF LIMIT***
1640
1650
      REM
      VTAB 15: INPUT "DO YOU WANT TO CONTINUE? (Y/N) "; K$
1660
      IF K$ = "N" THEN PRINT CHR$ (4); "RUN HELLO"
1670
      IF K$ = "Y" THEN GOTO 5090
1680
1690
      REM
      REM *** DRIVE ROUTINE FOR EAST AND***
1700
      REM *** UP INITIALIZATION.
1710
1720
      REM
1730
      REM
1740
      REM
      REM *** CHECK LIMIT SWITCH AS
1750
      REM *** DETERMINED BY L5, TO
1760
      REM *** SEE IF SEEKER ARM IS.
1770
      REM *** AGAINST IT. IF IT IS JUMP
1780
      REM *** OUT OF THE ROUTINE.
1790
      REM
1800
      Y1 = PEEK (L5):Y1 = PEEK (L5)
1810
      IF Y1 > CO THEN GOTO 2220
1820
1830
      REM
      REM *** VALUES TO POKE INTO D/A
1840
      REM *** CARD MEMORY LOCATIONS
1850
      REM *** (L1-L4) TO PRODUCE MOTOR
1860
      REM *** STEP. REPEAT FOR 8 STEP
1870
      REM *** CONTINUOUS LOOP.
1880
1890
      REM
      POKE L1, HI:
1900
      POKE L2, LO:
      POKE L3,HI:
      POKE L4,LO
      Y1 = PEEK (L5):
1910
       Y1 = PEEK (L5)
                       GOTO 2220
      IF Y1 > CO THEN
1920
      POKE L1,HI:
1930
       POKE L2,L0:
       POKE L3, LO:
       POKE L4,LO
       Y1 = PEEK (L5):
1940
       Y1 = PEEK (L5)
       IF Y1 > CO THEN GOTO 2220
 1950
       POKE L1,HI:
 1960
       POKE L2, LO:
       POKE L3, LO:
       POKE L4,HI
 1970
       Y1 = PEEK (L5):
       Y1 = PEEK (L5)
       IF Y1 > CO THEN GOTO 2220
 1980
       POKE L1, LO:
 1990
       POKE L2, LO:
       POKE L3, LO:
```

```
POKE L4,HI
     Y1 = PEEK (L5):
2000
      Y1 = PEEK (L5)
     IF Y1 > CO THEN GOTO 2220
2010
     POKE L1,L0:
2020
      POKE L2, HI:
      POKE L3, LO:
      POKE L4,HI
     Y1 = PEEK (L5):
2030
      Y1 = PEEK (L5)
     IF Y1 > CO THEN GOTO 2220
2040
     POKE L1,LO:
2050
      POKE L2, HI:
      POKE L3, LO:
      POKE L4, LO
     Y1 = PEEK (L5):
2060
      Y1 = PEEK (L5)
      IF Y1 > CO THEN GOTO 2220
2070
     POKE L1,L0:
2080
      POKE L2, HI:
      POKE L3, HI:
      POKE L4,L0
      Y1 = PEEK (L5):
2090
      Y1 = PEEK (L5)
     IF Y1 > CO THEN GOTO 2220
2100
2110 POKE L1,L0:
      POKE L2, LO:
      POKE L3, HI:
      POKE L4, LO
      REM
2120
      REM *** RETURN TO STEP ONE
2130
      REM
2140
      GOTO 1810
2150
2160
      REM
      REM *** RETURN TO THE CORECT
2170
2180 REM *** PORTION OF THE CONTROL
      REM *** SECTION, AS DETERMINED
2190
2200 REM *** BY L6
2210 REM
       ON L6 GOTO 810,910,1490,1510
2220
2230
      REM
       REM
 2240
      REM *** WEST AND DOWN COUNTING
 2250
      REM *** DRIVE ROUTINE.
 2260
       REM
 2270
      REM
 2280
 2290
      REM
      REM *** INITIALIZE COUNTER (N)
 2300
       REM
 2310
      N = 0
 2320
       REM
 2330
```

```
REM *** STEP ONE OF EIGHT
2340
2350
      REM
      POKE L1, LO:
2360
      POKE L2, L0:
      POKE L3, HI:
      POKE L4,L0
2370
      REM
2380
      REM *** INCRIMENT COUNTER
2390
      REM
2400
      N = N + 1
     REM
2410
      REM *** PRINT COUNT VALUE AND
2420
2430
      REM *** ASSIGN IT TO CORRECT
      REM *** VARIABLE AS DETERMINED
2440
2450
      REM *** BY L7
2460
     REM
      IF L7 = 200 THEN VTAB 10:
2470
      PRINT "HORIZCT="N:LN = N
2480
      IF L7 = 155 THEN VTAB 12:
      PRINT "VERTCT ="N:LT = N
2490
     POKE L1, LO:
      POKE L2,HI:
      POKE L3, HI:
      POKE L4,L0
2500
      REM
2510
      REM *** CHECK THE LIMIT SWITCH
2520
      REM *** ASSIGNED BY L5. IF THE
     REM *** SEEKER IS AGAINST IT EXIT ***
2530
2540
     REM *** THE DRIVE ROUTINE.
2550
      REM *** NOTE: THE TASKS ARE DIVIDED***
2560
      REM *** AND ASSIGNED TO EVERY
2570
      REM *** OTHER STEP FOR DRIVE SPEED***
2580
     REM
2590
     Y1 = PEEK (L5)
      Y1 = PEEK (L5)
2600
2610
      IF Y1 > = CO THEN GOTO 3050
2620
     N = N + 1
2630
      REM
2640
      REM *** CONTINUE FOR EIGHT STEP
2650
      REM *** LOOP.
2660
      REM
2670
      POKE L1,L0:
      POKE L2, HI:
      POKE L3,L0:
      POKE L4, LO
2680
      N = N + 1
      IF L7 = 200 THEN VTAB 10:
2690
      PRINT "HORIZCT="N:LN = N
2700
      IF L7 = 155 THEN VTAB 12:
      PRINT "VERTCT ="N:LT = N
     POKE L1,L0:
2710
```

```
POKE L2, HI:
      POKE L3, LO:
      POKE L4,HI
      Y1 = PEEK (L5)
2720
     Y1 = PEEK (L5)
2730
     IF Y1 > = CO THEN GOTO 3050
2740
     N = N + 1
2750
     POKE L1, LO:
2760
      POKE L2, LO:
      POKE L3,L0:
      POKE L4, HI
2770
      N = N + 1
      IF L7 = 200 THEN VTAB 10:
2780
      PRINT "HORIZCT="N:LN = N
      IF L7 = 155 THEN VTAB 12:
2790
      PRINT "VERTCT ="N:LT = N
      POKE L1, HI:
2800
      POKE L2,L0:
      POKE L3, LO:
      POKE L4, HI
      Y1 = PEEK (L5)
2810
      Y1 = PEEK (L5)
2820
      IF Y1 > = CO THEN GOTO 3050
2830
      N = N + 1
2840
      POKE L1, HI:
2850
      POKE L2, LO:
      POKE L3,LO:
      POKE L4,L0
      N = N + 1
2860
      IF L7 = 200 THEN VTAB 10:
2870
      PRINT "HORIZCT="N:LN = N
      IF L7 = 155 THEN VTAB 12:
2880
      PRINT "VERTCT ="N:LT = N
2890
      POKE L1,HI:
      POKE L2, LO:
       POKE L3, HI:
       POKE L4,LO
      Y1 = PEEK (L5)
2900
      Y1 = PEEK (L5)
2910
      IF Y1 > = CO THEN GOTO 3050
2920
       N = N + 1
 2930
 2940
       REM
       REM *** RETURN TO STEP ONE
 2950
      REM
 2960
      GOTO 2360
 2970
      REM
 2980
       REM *** WHEN WEST COUNTING RUN
 2990
       REM *** COMPLETE SWITCH TO DOWN
 3000
      REM *** COUNTING RUN. WHEN COUNT
 3010
       REM *** RUNS COMPLETE RETURN TO
 3020
       REM *** EAST/UP START POSITION
 3030
```

```
3040 REM
3050
     ON L6 GOTO 1100,1350
5000
5005
     REM
5010
     REM ***************
5015
     REM **
                   SUN LOCATION ROUTINE
5020
     REM **********************
5025
    REM
5030
     REM
5035 REM *** THIS ROUTINE LOCATES THE
5040 REM *** SUN IN A GENERAL AREA AND ***
5045 REM *** PASSES CONTROL TO THE SUN ***
5050 REM *** TRACKING ROUTINE FOR FINE ***
     REM *** ADJUSTING AND LOCK ON
5055
5060
     REM *** FOLLOWING.
5065
     REM
5070
     REM
5075 REM
5080 REM *** INITIALIZE COUNTERS
5085 REM,
5090 \text{ DH} = 0
5095 \quad Z = 0
5100 G = 0
5105 C2 = 0
5110 HOME
5115
     REM
5120 REM *** IF FAIL TO LOCATE THE SUN ***
5125
     REM *** AFTER TWO TRYS GO TO
5130 REM *** ERROR MESSAGE.
5135 REM
5140
    IF AB = 2 GOTO 6025
5145 \quad AB = AB + 1
     VTAB 2: PRINT "THIS ROUTINE FINDS THE SUN'S POSITION"
5150
     VTAB 3: PRINT "AND PASSES CONTROL TO SUN TRACKING"
5155
5160
     VTAB 4: PRINT "ROUTINES"
5165 REM
     REM *** A/D CARD MEMORY LOCA-
5168
     REM *** TIONS FOR DRIVE STEPS
5170
5175
    REM
5180 L1 = M + 1:
     L2 = M + 2:
     L3 = M + 3:
     L4 = M + 4
5185
     REM
5190
     REM *** CHECK UPSENSOR VALUE IF
5195
     REM *** GREATER THAN CUTOFF VALUE ***
5200 REM *** GO TO SUN LOCATION LOGIC ***
5205 REM *** IF NOT CONTINUE TO LOOP
5210 REM
5215 C2 = PEEK (M + 3):
```

```
C2 = PEEK (M + 3)
      IF C2 > = 130 THEN GOTO 5250
5220
5225
     VTAB 6: PRINT "US="C2
5230
     GOTO 5215
5235
     REM
5240
      REM ***
                  SUN LOCATION LOGIC
5245
      REM
5250
      VTAB 9: PRINT "EAST=0 DEG:SOUTH=90 DEG:WEST=180 DEG
5255
      REM
5260
     REM *** FIRST STEP
5265
     REM
     POKE L1,LO:
5270
      POKE L2, LO:
      POKE L3, HI:
      POKE L4, LO
5275
      REM
5280
     REM *** CHECK UPSENSOR (C2), AND
     REM *** WEST LIMIT SWITCH (LW).
     REM *** VALUES.
5290
5295
     REM
      C2 = PEEK (M + 3):
5300
      C2 = PEEK (M + 3)
5305
     LW = PEEK (M + 6):
      LW = PEEK (M + 6)
5310
      REM
     REM *** PRINT UPSENSOR VALUE ON
5315
     REM *** SCREEN, ENSURE SUN BRIGHT ***
5320
5325 REM *** ENOUGH (C2>131), THAT ARM ***
5330 REM *** IS NOT AGAINST WEST LIMIT ***
5335
     REM *** SWITCH (LW<160), AND
5340
     REM *** INCRIMENT DEGREES HORIZ.
5345
     REM *** COUNTER
                      (DH)
5350
     REM
      VTAB 6: PRINT "UPSENSOR READING = "C2
5355
5360
      IF C2 < 131 THEN GOTO 5945
5365
     IF LW > 160 THEN GOTO 5985
5370
     DH = DH + 1
5375
     REM
5380
      REM *** SECOND STEP
5385
     REM
5390
     POKE L1,LO:
      POKE L2, HI:
      POKE L3, HI:
      POKE L4, LO
5395
     REM
     REM *** IF OF UPSENSOR OBTAINED
5400
5405 REM *** THIS TIME (C2) IS GREATER ***
5410
     REM *** THAN THE VALUE OBTAINED
     REM *** LAST TIME (C1), ZERO THE
5415
5420
     REM *** COUNTER BECAUSE STILL
5425 REM *** HEADING TOWARD THE SUN
```

```
5430
     REM
5435
     IF C2 > C1 THEN Z = 0:G = 0
     REM
5440
      REM *** IF CURRENT VALUE LESS
5445
      REM *** THAN LAST VALUE INCRIMENT
5450
      REM *** COUNTER (Z), AND STEPS
5455
5460
      REM *** TAKEN SINCE MAX VALUE
5465
      REM *** COUNTER (G).
5470
      REM
5475
      IF C2 < C1 THEN Z = Z + 1:G = G + 2
5480
     REM
5485
      REM *** CONTINUE COUNTING STEPS
      REM *** SINCE PASSED MAX VALUE
5490
      REM *** OF UPSENSOR.
5495
5500
      REM
5505
      IF (C2 = C1) AND (Z > 0) THEN G = G + 2
      REM
5510
5515
      REM *** REPLACE PREVIOUS READING
5520
      REM *** WITH CURRENT READING FOR
5525
      REM *** NEXT CHECK.
5530
      REM
5535
      C1 = C2
5540
      REM
      REM *** IF CURRENT READING WAS
5545
5550
      REM *** LESS THAN PREVIOUS READING***
      REM *** FOR THREE CONSECUTIVE
      REM *** CHECKS, THEN ARE GOING
5560
5565
      REM *** AWAY FROM SUN. GO BACK TO ***
5570
      REM *** WHERE FIRST C2<C1 OCCURED ***
5575
      REM *** (G) STEPS AGO.
5580
      REM
5585
      IF Z = 3 THEN AB = 0: GOTO 6090
5590
      REM
5595
      REM *** INCRIMENT DEGREES HORIZ.
      REM *** COUNTER (DH). REPEAT ABOVE***
5600
5605
      REM *** LOGIC ON ALTERNATE STEP
      REM *** BASIS FOR REMAINING STEPS ***
5610
5615
     REM *** OF EIGHT STEP DRIVE LOOP
5620
      REM
5625
      DH = DH + 1
5630
      POKE L1,L0:
      POKE L2, HI:
      POKE L3,L0:
      POKE L4,L0
5635
      C2 =
            "EEK (M + 3):
      C2 = FEEK (M + 3)
5640
      LW = PEEK (M + 6):
      LW = PEEK (M + 6)
5645
      VTAB 6: PRINT "UPSENSOR READING = "C2
5650
      IF C2 < 131 THEN GOTO 5945
      IF LW > 160 THEN GOTO 5985
5655
```

```
X1 = DH / LD
5660
      DH = DH + 1
5665
      POKE L1, LO:
5670
      POKE L2, HI:
      POKE L3,L0:
      POKE L4,HI
      IF C2 > C1 THEN Z = 0:G = 0
5675
      IF C2 < C1 THEN Z = Z + 1:6 = G + 2
5680
      IF (C2 = C1) AND (Z > 0) THEN G = G + 2
5685
      C1 = C2
5690
      IF Z = 3 THEN AB = 0: GOTO 6090
5695
      DH = DH + 1
5700
5705
      REM
      REM *** SET UP FOR DEGREES LONG.
5710
      REM *** PRINTOUT WITH ONE DECIMAL
5715
      REM *** PLACE ACCURACY.
5720
5725
      REM
      X1 = INT (X1 * 10 + .5) / 10
5730
      POKE L1,LO:
5735
      POKE L2, LO:
      POKE L3, LO:
      POKE L4,HI
             PEEK (M + 3):
5740
      C2 =
             PEEK (M + 3)
       C2 =
            PEEK (M + 6):
      LW =
5745
            PEEK (M + 6)
       LW =
       VTAB 6: PRINT "UPSENSOR READING = "C2
5750
       IF C2 < 131 THEN
                          GOTO 5945
5755
       IF LW > 160 THEN
                          GOTO 5985
5760
       VTAB 8: PRINT "DEGREES LONGITUDE = "X1
5765
       DH = DH + 1
 5770
       POKE L1,HI:
 5775
       POKE L2, LO:
       POKE L3,LO:
       POKE L4,HI
       IF C2 > C1 THEN Z = 0:G = 0
 5780
       IF C2 < C1 THEN Z = Z + 1:G = G + 2
 5785
       IF (C2 = C1) AND (Z > 0) THEN G = G + 2
 5790
       C1 = C2
 5795
       IF Z = 3 THEN AB = 0: GOTO 6090
 5800
 5805
       DH = DH + 1
       POKE L1,HI:
 5810
       POKE L2, LO:
       POKE L3, LO:
       POKE L4, LO
             PEEK (M + 3):
 5815
       C2 =
             PEEK (M + 3)
       C2 =
             PEEK (M + 6):
 5820
       LW =
             PEEK (M + 6)
       LW =
       VTAB 6: PRINT "UPSENSOR READING = "C2
 5825
       IF C2 < 131 THEN GOTO 5945
 5830
```

```
IF LW > 160 THEN GOTO 5985
5835
     DH = DH + 1
5840
     POKE L1,HI:
5845
     POKE L2, LO:
     POKE L3, HI:
     POKE L4, LO
5850
     IF C2 > C1 THEN Z = 0:G = 0
     IF C2 < C1 THEN Z = Z + 1:G = G + 2
5855
5860
     IF (C2 = C1) AND (Z > 0) THEN G = G + 2
5865 \quad C1 = C2
     IF Z = 3 THEN AB = 3: GOTO 6090
5870
    DH = DH + 1
5875
5880 REM
5885 REM *** RETURN TO STEP ONE
5890 REM
     GOTO 5270
5895
5900 REM
5905 REM *** IF UPSENSOR GOES BELOW
5910 REM *** THRESHOLD RETURN TO START ***
5915 REM *** POSITION. USE FLASHING
5920 REM *** MESSAGE. REZERO COUNTER
5925 REM *** (AB) SINCE SUN LOSS DUE
5930 REM *** TO CLOUD COVER IN NORMAL
5935 REM *** OCCURANCE.
5940
     REM
5945
     VTAB 12: FLASH :
     PRINT "SUN INTENSITY BELOW THRESHOLD VALUE":
     VTAB 13: PRINT "RETURNING TO START UP POSITION":
     NORMAL :AB = 0: GOTO 1470
5950
     REM
5955 REM *** IF TRANSITION FROM EAST TO***
5960 REM *** WEST WITHOUT ACHIEVING
5965 REM *** LOCKON, RETURN TO STARTUP ***
5970 REM *** POSITION, BUT DO NOT RESET***
     REM *** COUNTER (AB).
5975
5980
     REM
5985
     VTAB 12: FLASH :
     PRINT "REACHED WEST LIMIT WITHOUT FINDING":
     VTAB 13: PRINT "ACCEPTABLE LOCK ON CRITERIA, RESET":
     NORMAL : GOTO 1470
5990
     REM
5995 REM *** IF FAIL TO FIND SUN AFTER ***
6000 REM *** TWO EAST TO WEST TRYS,
6005 REM *** PRINT ERROR MESSAGE AND
6010 REM *** DETERMINE IF WANT TO
6015 REM *** CONTINUE TRYING.
     REM
6020
     VTAB 16: FLASH :
6025
     PRINT "UNABLE TO LOCATE SUN LONGITUDE"
     VTAB 17: PRINT "AFTER TWO TRYS. SUN PROBABLY"
6030
6035 VTAB 18: PRINT "SETTING TOO FAR WEST": NORMAL
```

```
VTAB 20: INPUT "WANT TO TRY AGAIN(Y/N)?"; K$
6040
      IF K$ = "Y" THEN AB = 0: HOME : GOTO 1460
6045
                                 CHR$ (4); "RUN HELLO"
      IF K$ = "N" THEN PRINT
6050
6055
      REM
                  BACKUP STEP SEQUENCE
      REM ***
6060
      REM
6065
      REM *** RETURN TO POSITION WHERE
6070
      REM *** SUN INTENSITY FIRST BEGAN ***
6075
      REM *** TO DROP OFF (G) STEPS AGO ***
6080
      REM
6085
      POKE L1, HI:
6090
      POKE L2, LD:
      POKE L3, HI:
      POKE L4, LO
6095
      GOSUB 6205
      POKE L1, HI:
6100
      POKE L2, LO:
      POKE L3, LO:
      POKE L4,LO
      GOSUB 6205
6105
      POKE L1,HI:
6110
      POKE L2, LO:
      POKE L3, LO:
      POKE L4, HI
      GOSUB 6205
6115
      POKE L1, LO:
6120
      POKE L2, LO:
      POKE L3, LO:
       POKE L4, HI
6125
      GOSUB 6205
       POKE L1,LO:
6130
       POKE L2, HI:
       POKE L3, LO:
       POKE L4,HI
       GOSUB 6205
6135
       POKE L1.LO:
6140
       POKE L2, HI:
       POKE L3, LO:
       POKE L4,LO
       GOSUB 6205
6145
6150
       POKE L1, LO:
       POKE L2, HI:
       POKE L3, HI:
       POKE L4,L0
       GOSUB 6205
 6155
 6160
       POKE L1, LO:
       POKE L2, LO:
       POKE L3, HI:
       POKE L4,LO
       GOSUB 6205
 6165
       GOTO 6090
 6170
```

```
6175
     REM
6180
     REM *** SUBROUTINE TO DECRIMENT
6185 REM *** (G) COUNTER, AND DEGREES
     REM *** HORIZONTAL COUNT AS
6190
     REM *** BACKUP.
6195
6200
      REM
6205
      IF G = 0 THEN AC = 0: GOTO 6260
     G = G - 1
6210
6215 DH = DH - 1
6220
     RETURN
6225
     REM
6230 REM *** THIS PORTION OF THE SUN
6235 REM *** LOCATION SECTION GETS AN
6240 REM *** ELEVATION LOCKON PRIOR TO ***
     REM *** PASSING CONTROL TO THE
6245
6250
      REM *** TRACKING SECTION.
6255
     REM
6260
     DV = 0
6265
     REM
6270
     REM *** IF GO THROUGH ELEVATION
6275 REM *** TRANSITION TWICE WITHOUT
6280 REM *** ACHIEVING LOCKON, PRINT
6285 REM *** ERROR MESSAGE.
6290
      REM
      IF AC = 2 THEN GOTO 5365
6295
6300
     AC = AC + 1
6305
     HOME
6310
     VTAB 2: PRINT "NOW LOCKING ONTO SUN'S ELEVATION"
6315 REM
     REM *** PRINT LONGITUDE VALUE
6320
6325 REM *** FOUND IN PREVIOUS ROUTINE ***
6330 REM *** WITH ONE DECIMAL POINT
6335 REM *** ACCURACY.
      REM
6340
6345 \quad X1 = DH / LD
     X1 = INT (X1 * 10 + .5) / 10
6355 VTAB 4: PRINT "SUN LONGITUDE ="X1
     VTAB 5: PRINT "EAST=0 DEG SOUTH=90 DEG WEST =180 DEG"
6360
6365
     REM
6370
     REM *** SET MEMORY LOCATIONS FOR ***
6375
     REM *** DRIVE ROUTINE.
6380
      REM
6385
     L1 = M + 5:
      L2 = M + 6:
      L3 = M + 7:
      L4 = M + 8
     POKE L1,L0:
6390
      POKE L2, LO:
      POKE L3,HI:
      POKE L4, LO
6395
     REM
```

```
REM *** GET VALUES OF UPSENSOR(C3) ***
6400
     REM *** DOWN SENSOR (C4), AND
6405
     REM *** UP LIMIT SWITCH (LU)
6410
     REM
6415
     C3 = PEEK (M + 3):
6420
     C3 = PEEK (M + 3)
     C4 = PEEK (M + 4):
6425
     C4 =
           PEEK (M + 4)
6430
     LU = PEEK (M + 7):
     LU = PEEK (M + 7)
6435
     REM
6440
     REM *** IF UPSENSOR (C3) BELOW
     REM *** SUNLIGHT THRESHOLD, OR HIT***
6445
6450
     REM *** UPLIMIT SWITCH, EXIT DRIVE***
6455
     REM *** LOOP.
6460
     REM
     IF C3 < 131 THEN
                        GOTO 6920
6465
6470
     IF LU > 160 THEN GOTO 6950
6475
     REM
     REM *** INCRIMENT DEGREES ELEVA-
6480
6485
     REM *** TION COUNTER (DV)
6490
     REM
6495
     DV = DV + 1
6500
     REM
     REM *** STEP TWO
6505
6510
     REM
6515
     POKE L1,L0:
     POKE L2, HI:
     POKE L3, HI:
     POKE L4, LO
6520
     REM
6525
     REM *** IF ACHIEVE BALANCE BETWEEN***
6530
     REM *** UPPER AND LOWER SENSOR TO ***
     REM *** WITHIN ONE UNIT, GO TO
6535
6540
     REM *** SUN TRACKING ROUTINE.
6545
     REM
     IF C3 = C4 THEN GOTO 8060
6550
     IF (C3 = C4 + 1) OR (C3 = C4 - 1) THEN
6555
                                              GOTO 8060
6560
     DV = DV + 1
6565
     REM
6570
     REM *** CALCULATE DEGREES ELEV.
     REM *** BY DIVIDING THE COUNTER
6575
6580
     REM *** VALUE (DV) BY STEPS PER
6585
     REM *** DEGREE ELEVATION (LE),
6590
     REM *** DETERMINED IN CALIBRATION ***
6595
     REM *** ROUTINE. REPEAT ABOVE
     REM *** LOGIC FOR REMAINING STEPS ***
6600
6605
     REM
6610
     X2 = DV / LE
     POKE L1,LO:
6615
     POKE L2, HI:
```

```
POKE L3, LO:
       POKE L4,L0
       C3 = PEEK (M + 3):
 6620
       C3 = PEEK (M + 3)
 6625
       C4 = PEEK (M + 4):
       C4 = PEEK (M + 4)
       LU = PEEK (M + 7):
 6630
       LU = PEEK (M + 7)
 6635
       IF C3 < 131 THEN GOTO 6920
 6640
       IF LU > 160 THEN GOTO 6950
 6645
       DV = DV + 1
       POKE L1,L0:
 6650
       POKE L2, HI:
       POKE L3, LO:
       POKE L4,HI
       IF C3 = C4 THEN GOTO 8060
 6655
 6660
       IF (C3 = C4 + 1) OR (C3 = C4 - 1) THEN GOTO 8060
       DV = DV + 1
 6665
       X2 = INT (X2 * 10 + .5) / 10
 6670
       POKE L1,L0:
 6675
       POKE L2, LO:
       POKE L3, LO:
       POKE L4, HI
 6680
       C3 = PEEK (M + 3):
       C3 = PEEK (M + 3)
       C4 = PEEK (M + 4):
 6685
       C4 = PEEK (M + 4)
 6690
       LU = PEEK (M + 7):
       LU = PEEK (M + 7)
 6695
       IF C3 < 131 THEN GOTO 6920
       IF LU > 160 THEN GOTO 6950
 6700
 6705
       DV = DV + 1
       POKE LI,HI:
 6710
       POKE L2, LO:
       POKE L3,L0:
       POKE L4,HI
 6715
       IF C3 = C4 THEN GOTO 8060
       IF (C3 = C4 + 1) OR (C3 = C4 - 1) THEN GOTO 8060
 6720
 6725
       DV = DV + 1
 6730
       REM
 6735
       REM *** PRINT DEGREES ELEVATION
       REM *** ONLY ONCE PER EIGHT STEP
 6740
 6745
       REM *** LOOP DUE TO SPEED
6750
       REM *** CONSIDERATIONS.
 6755
       REM
       VTAB 7: PRINT "DEGREES ELEVATION ="X2" DEG"
 6760
 6765
       POKE L1, HI:
       POKE L2, LO:
       POKE L3, LO:
       POKE L4,LO
 6770 C3 = PEEK (M + 3):
```

```
C3 = PEEK (M + 3)
     C4 = PEEK (M + 4):
6775
     C4 = PEEK (M + 4)
     LU = PEEK (M + 7):
6780
      LU = PEEK (M + 7)
     IF C3 < 131 THEN GOTO 6920
6785
6790
     IF LU > 160 THEN GOTO 6950
     DV = DV + 1
6795
6800
     POKE L1,HI:
     POKE L2, LO:
     POKE L3,HI:
      POKE L4, LO
6805
     IF C3 = C4 THEN GOTO 8060
     IF (C3 = C4 + 1) OR (C3 = C4 - 1) THEN GOTO 8060
6810
     DV = DV + 1
6815
6820
     GOTO 6390
6825
     REM
6830 REM *** PRINT ERROR MESSAGE IF
6835 REM *** HAVENT ACHIEVED LOCKON
6840 REM *** AFTER TWO ATTEMPTS. AND
6845 REM *** DETERMINE IF WANT TO
6850
     REM *** CONTINUE.
6855
     REM
     VTAB 16: FLASH :
6860
      PRINT "UNABLE TO ACHIEVE SENSOR BALANCE AFTER"
6865
     VTAB 17:
      PRINT "TWO ATTEMPTS. POSSIBLE SYSTEM PROBLEM": NORMAL
     VTAB 19: INPUT "WANT TO TRY AGAIN(Y/N)?";K$
6870
     IF K$ = "Y" THEN AC = 0: HOME : GOTO 1460
6875
     IF K$ = "N" THEN PRINT CHR$ (4); "RUN HELLO"
6880
6885
     REM
     REM *** IF SUN GOES BELOW THRES-
6890
6895 REM *** HOLD (BEHIND A CLOUD)
6900 REM *** WHILE ATTEMPTING TO LOCK ***
6905 REM *** ON, RETURN TO START POSIT. ***
6910
     REM *** AND TRY AGAIN.
6915
     REM
     VTAB 12: FLASH :
6920
      PRINT "SUN INTENSITY BELOW THRESHOLD VALUE":
      VTAB 13: PRINT "RETURNING TO START UP POSITION":
      AC = 0: NORMAL : GOTO 1470
6925
     REM
6930
     REM *** IF REACH UPPER LIMIT
6935
     REM *** SWITCH AFTER FIRST TRY,
6940
     REM *** PRINT THIS MESSAGE.
6945
     REM
     VTAB 12: FLASH :
6950
      PRINT "HAVE REACHED UPPER LIMIT WITHOUT":
      VTAB 13: PRINT "ACHIEVING SENSOR BALANCE, REZEROING":
     NORMAL : GOTO 1470
```

```
8000
     REM
8010
     REM ***********
8020
     REM **
                    SUN TRACKING ROUTINE
8030
     REM *******************************
8040
     REM
     REM
8050
8060
     HOME
8070
     REM
8080
     REM *** ONCE ROUGH LOCKON IS
8090
     REM *** ACHIEVED BY THE PREVIOUS
8100
     REM *** ROUTINE, THIS ROUTINE FINE***
     REM *** ADJUSTS SENSOR BALANCE AND***
8110
8120
     REM *** TRACKS THE SUN.
8130
     REM
     REM *** INIT. OUT OF BALANCE CTRS. ***
8140
8150
     REM
     UN = 0:
8160
     DN = 0:
     EN = 0:
     WN = 0
8170
     REM
8180
     REM *** COUNTER USED TO DETERMINE ***
8190
     REM *** IF SENSOR UNBALANCE IS
8200
     REM *** VALID OR TRANSITORY
8210
     REM
8220
     Q = 5
8230
     VTAB 2: PRINT "SUN TRACKING ROUTINE"
     VTAB 3: PRINT "THIS ROUTINE INSURES THAT THE TRACKER"
8240
     VTAB 4: PRINT "STAYS LOCKED ONTO THE SUN. IF A CLOUD"
8250
     VTAB 5: PRINT "COVERS THE SUN, CONTROL IS PASSED TO"
8260
     VTAB 6: PRINT "THE CLOUD COVER WAIT ROUTINE UNTIL"
8270
8280
     VTAB 7: PRINT "THE SUN REAPPEARS"
8290
     REM
8300
     REM *** GET VALUES OF ALL SENSORS ***
8310
     REM *** AND LIMIT SWITCHES.
8320
     REM
8330
     US =
           PEEK (M + 3):
     US = PEEK (M + 3)
8340
     DS = PEEK (M + 4):
      DS =
           PEEK (M + 4)
8350
     ES =
           PEEK (M + 1):
     ES = PEEK (M + 1)
     WS = PEEK (M + 2):
8360
           PEEK (M + 2)
     WS =
8370
     UL =
           PEEK (M + 7):
     UL =
           PEEK (M + 7)
8380
     DL =
           PEEK (M + 8):
     DL =
           PEEK (M + 8)
           PEEK (M + 5):
8390
     EL =
      EL = PEEK (M + 5)
```

```
WL = PEEK (M + 6):
8400
      WL = PEEK (M + 6)
8410
      REM
      REM *** IF UUPSENSOR GOES BELOW
8420
      REM *** THRESHOLD GO TO CLOUD
8430
      REM *** WAIT ROUTINE. IF HIT LIMIT***
      REM *** SWITCH, GO TO APPROPRIATE ***
8450
8460
      REM *** NOTIFICATION MESSAGE
8470
      REM
     IF US < 131 THEN
                        GOTO 11090
8480
      IF UL > 160 THEN
8490
                        60TO 9220
      IF DL > 160 THEN
                        GOTO 9270
8500
      IF EL > 160 THEN
                        GOTO 9320
8510
     IF WL > 160 THEN
                        GDTD 9370
8520
8530
      REM
      REM *** IF UPPER/LOWER OR EAST/
8540
8550
      REM *** WEST SENSORS ARE IN
8560
      REM *** BALANCE, ZERO APPROPRIATE ***
8570
      REM *** UNBALANCE COUNTER.
8580
      REM
      IF US = DS THEN UN = 0:DN = 0
8590
      IF ES = WS THEN EN = 0:WN = 0
8600
8610
      REM
8620
      REM *** IF SENSOR PAIRS ARE OUT OF***
8630
      REM *** BALANCE INCRIMENT PROPER
      REM *** UNLBALANCE COUNTER.
8640
8650
      REM
      IF US > DS THEN UN = UN + 1
8660
8670
     IF DS > US THEN DN = DN + 1
      IF ES > WS THEN EN = EN + 1
8680
      IF WS > ES THEN WN = WN + 1
8690
8700
      REM
B710
      REM *** SYSTEM OPERATION OUTPUTS
8720
8730
      VTAB 17: PRINT "UN="UN" DN="DN" EN="EN" WN="WN"
L5="L5"
8740
      VTAB 18: PRINT "SU="SU" SD="SD" SE="SE" SW="SW
8750
      REM
      REM *** CHECK SENSOR OUT OF
8760
8770
      REM *** BALANCE COUNTERS AND GO TO***
8780
      REM *** APPROPRIATE DRIVE ROUTINE ***
8790
      REM *** IF COUNTER IS ABOVE
8800
      REM *** THRESHOLD VALUE (G)
8810
      REM
      IF UN > = Q THEN L1 = M + 5:
8820
      L2 = M + 6:
      L3 = M + 7:
      L4 = M + 8:
      L5 = 1:
      GOTO 9480
8830
      IF DN \rangle = Q THEN L1 = M + 5:
```

```
L2 = M + 6:
     L3 = M + 7:
     L4 = M + 8:
     L5 = 1:
      GOTO 10380
8840
     IF EN > = Q THEN L1 = M + 1:
      L2 = M + 2:
     L3 = M + 3:
     L4 = M + 4:
     L5 = 2:
      GOTO 10380
      IF WN \rangle = Q THEN L1 = M + 1:
8850
     L2 = M + 2:
     L3 = M + 3:
     L4 = M + 4:
      L5 = 2:
      GOTO 9480
     REM
8860
     REM *** PUT SENSOR VALUES ON
8870
8880
     REM *** SCREEN
8890
     REM
8900
     VTAB 9: PRINT TAB( 15) "US="US
                     TAB( 12) "WS="WS" ES="ES
8910
     VTAB 10: PRINT
8920
     VTAB 11: PRINT TAB( 15) "DS="DS
8930
     REM
     REM *** CONTINUE LOOP
8940
8950
     REM
     GOTO 8330
8960
     REM
8970
     REM *** PRINT DEGREES LONGITUDE
8980
8990
     REM *** AND ELEVATION VALUES WHEN ***
9000 REM *** RETURN FROM DRIVE ROUTINES***
9010 REM *** ONLY, SO LOGIC LOOP IS NOT***
9020 REM *** SLOWED DOWN BY UNNECESSARY***
     REM *** PRINT STATEMENTS.
9030
9040
     REM
9050 X1 = DH / LD
     X1 = INT (X1 * 10 + .5) / 10
9060
     VTAB 14: PRINT "DEGREES LONGITUDE ="X1" DEG"
9070
9080
     X2 = DV / LE
9090
     X2 = INT (X2 * 10 + .5) / 10
     VTAB 15: PRINT "DEGREES ELEVATION ="X2" DEG"
9100
9110
     REM
      REM *** RETURN TO LOGIC LOOP AFTER***
9120
9130
     REM *** PRINT OUT.
9140
     REM
9150
     GOTO 8330
9160
     REM
     REM *** LIMIT SWITCH DEPRESSION
9170
9180 REM *** MESSAGES PRINTED WHEN HIT ***
9190 REM *** LIMIT SWITCH WHILE IN
```

```
9200 REM *** TRACKING MODE.
9210 REM
9220 VTAB 17: FLASH : PRINT "HAVE REACHED UPPER LIMIT.
CHECK SYSYTEM"
9230 VTAB 18: PRINT "ALLIGNMENT TO TRUE EAST": NORMAL
9240 VTAB 19: INPUT "WANT TO RERUN(Y/N)?"; K$
9250 IF K$ = "Y" THEN HOME : GOTO 1460
9260 IF K$ = "N" THEN PRINT CHR$ (4); "RUN HELLO"
9270 VTAB 17: FLASH : PRINT "HAVE REACHED DOWN LIMIT, MOST
PROBABLE"
9280 VTAB 18: PRINT "SUNSET OR MISALLIGNMENT": NORMAL
9290 VTAB 19: INPUT "WANT TO RERUN (Y/N)?";K$
9300 IF K$ = "Y" THEN HOME : GOTO 1460
9310 IF K$ = "N" THEN PRINT CHR$ (4); "RUN HELLO"
9320 VTAB 17: FLASH : PRINT "HAVE REACHED EAST LIMIT. MOST
PROBABLE"
9330 VTAB 18: PRINT "CAUSE EARLY MORNING, SUN TOO LOW":
NORMAL
9340 VTAB 19: INPUT "WANT TO RERUN (Y/N)?"; K$
9350 IF K$ = "Y" THEN HOME : GOTO 1460
9360 IF K$ = "N" THEN PRINT CHR$ (4); "RUN HELLO"
9370 VTAB 17: FLASH : PRINT "HAVE REACHED WEST LIMIT, MOST
PROBABLE"
9380 VTAB 18: PRINT "CAUSE, NEAR SUNSET": NORMAL
9390 VTAB 19: INPUT "RERUN OR GO TO SLEEP (R/S)?";K$
9400 IF K$ = "R" THEN HOME : GOTO 1460
     IF K$ = "S" THEN HOME : VTAB 10:
9410
     PRINT "THANKYOU I'M REALLY TIRED": GOTO 1460
9420
     REM
9430 REM *** UP/WEST DRIVE ROUTINES ***
9440 REM
9450 REM
9460 REM *** STEPS PER DRIVE ACCESS
9470 REM
9480 \text{ CT} = 2
9490 REM
9500 REM *** GO TO DRIVE STEP ENTRY
9510 REM *** LOGIC STATEMENT AS DETER- ***
9520 REM *** MINED BY (L5)
9530 REM
9540 IF L5 = 1 THEN GOTO 9620
9550 IF L5 = 2 THEN GOTO 9630
9560 REM
9570 REM *** DETERMINE PROPER STEP TO ***
9580 REM *** REENTER DRIVE ROUTINE TO ***
9590 REM *** PREVENT JERKY SEEKER
9600 REM *** MOTION WHILE TRACKING
9610 REM
```


MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

```
ON SU GOTO 9640,9950,10000,10050,
9620
              10100, 10150, 10200, 10250
9630
      ON SW GOTO 9640,9950,10000,10050,
              10100, 10150, 10200, 10250
     POKE L1,L0:
9640
      POKE L2, LO:
      POKE L3, HI:
      POKE L4, LO
9650
      REM
9660
     REM *** SET REENTRY STEP FOR THIS ***
     REM *** AND CORRESPONDING DRIVE
9670
9680 REM *** LOOP IN OPPOSITE DIRECTION***
     REM *** SINCE A STEP HERE CHANGES ***
9690
9700
      REM *** THE REENTRY POINT IN OTHER***
9710 REM *** DRIVE LOOP.
9720
     REM
9730
     IF L5 = 1 THEN SU = 2:
      DV = DV + 1:UN = 0:SD = 1
9740
     REM
9750
     REM *** BESIDES DETERMINING
9760 REM *** REENTRY POINT, CHANGE
9770 REM *** DEGREE COUNTERS (DV) (DH) ***
9780
      REM *** AND ZERO UNBALANCE COUNTER***
9790
      REM *** (UN), (WN)
9800
     REM
      IF L5 = 2 THEN SW = 2:
9810
      DH = DH + 1:WN = 0:SE = 1
9820
     REM
9830
     REM *** AFTER CORRECT NUMBER OF
9840
     REM *** STEPS PER DRIVER ACCESS
9850
     REM *** RETURN TO LOGIC SECTION
9860
      REM
9870
     IF CT = 0 THEN GOTO 9050
9880
     REM
9890 REM *** DECRIMENT STEPS PER ACCESS***
9900
      REM *** COUNTER. CONTINUE ABOVE
9910 REM *** LOGIC SEQUENCE FOR EIGHT
                                         ***
9920 REM *** STEP LOOP.
9930
     REM
9940 \text{ CT} = \text{CT} - 1
9950 POKE L1,L0:
      POKE L2.HI:
      POKE L3,HI:
      POKE L4,L0
9960
      IF L5 = 1 THEN SU = 3:
      DV = DV + 1:UN = 0:SD = 8
9970
     IF L5 = 2 THEN SW = 3:
      DH = DH + 1:WN = 0:SE = 8
      IF CT = 0 THEN GOTO 9050
9980
9990 \text{ CT} = \text{CT} - 1
10000 POKE L1,LQ:
```

```
POKE L2, HI:
       POKE L3,LO:
       POKE L4,LO
       IF L5 = 1 THEN SU = 4:
10010
       DV = DV + 1:UN = 0:SD = 7
       IF L5 = 2 THEN SW = 4:
10020
       DH = DH + 1:WN = 0:SE = 7
       IF CT = 0 THEN GOTO 9050
10030
       CT = CT - 1
10040
10050
       POKE L1,L0:
       POKE L2, HI:
       POKE L3, LO:
       POKE L4, HI
       IF L5 = 1 THEN SU = 5:
10060
       DV = DV + 1:UN = 0:SD = 6
       IF L5 = 2 THEN SW = 5:
10070
       DH = DH + 1:WN = 0:SE \approx 6
10080
       IF CT = 0 THEN GOTO 9050
       CT = CT - 1
10090
10100
       POKE L1,LO:
       POKE L2, LO:
       POKE L3, LO:
       POKE L4, HI
       IF L5 = 1 THEN SU = 6:
10110
       DV = DV + 1:UN = 0:SD = 5
       IF L5 = 2 THEN SW = 6:
10120
       DH = DH + 1:WN = 0:SE = 5
10130
       IF CT = 0 THEN GOTO 9050
       CT = CT - 1
10140
       POKE L1, HI:
10150
       POKE L2, LO:
       POKE L3, LO:
       POKE L4,HI
       IF L5 = 1 THEN SU = 7:
10160
        DV = DV + 1:UN = 0:SD = 4
10170
       IF L5 = 2 THEN SW = 7:
        DH = DH + 1:WN \approx 0:SE = 4
        IF CT = 0 THEN GOTO 9050
10180
10190
       CT = CT - 1
       POKE L1, HI:
10200
        POKE L2, LO:
        POKE L3,LO:
        POKE L4,L0
       IF L5 = 1 THEN SU = 8:
10210
        DV = DV + 1:UN = 0:SD = 3
10220
        IF L5 = 2 THEN SW = 8:
        DH = DH + 1:WN = 0:SE = 3
        IF CT = 0 THEN GOTO 9050
10230
        CT = CT - 1
10240
        POKE L1,HI:
10250
        POKE L2,L0:
```

```
POKE L3.HI:
       POKE L4.LO
10260
       IF L5 = 1 THEN SU = 1:
       DV = DV + 1:UN = 0:SD = 2
10270
       IF L5 = 2 THEN SW = 1:
       DH = DH + 1:WN = 0:SE = 2
       IF CT = 0 THEN GOTO 9050
10280
10290
      CT = CT - 1
10300
       GOTO 9640
10310
       REM
       REM *** DOWN/EAST DRIVE ROUTINES
10320
10330
       REM
10340
       REM
10350
       REM *** LOGIC SAME AS FOR UP/WEST ***
       REM *** DRIVE ROUTINES
10360
10370
       REM
10380 \text{ CT} = 2
       IF L5 = 1 THEN GOTO 10410
10390
10400
       IF L5 = 2 THEN GOTO 10420
10410
       ON SD GOTO 10430,10480,10530,10580,
              10630, 10680, 10730, 10780
10420
       ON SE GOTO 10430,10480,10530,10580,
             10630, 10680, 10730, 10780
       POKE L1, HI:
10430
       POKE L2, LO:
       POKE L3, HI:
       POKE L4,LO
10440
       IF L5 = 1 THEN SD = 2:
       DV = DV - 1:DN = 0:SU = 1
10450
       IF L5 = 2 THEN SE = 2:
       DH = DH - 1:EN = 0:SW = 1
       IF CT = 0 THEN GOTO 9050
10460
       CT = CT - 1
10470
       POKE L1,HI:
10480
       POKE L2, LO:
       POKE L3, LO:
       POKE L4,L0
10490
       IF L5 = 1 THEN SD = 3:
       DV = DV - 1:DN = 0:SU = 8
10500
       IF L5 = 2 THEN SE = 3:
       DH = DH - 1:EN = 0:SW = 8
       IF CT = 0 THEN GOTO 9050
10510
10520
       CT = CT - 1
10530
       POKE L1, HI:
       POKE L2,L0:
       POKE L3.LO:
       POKE L4.HI
10540
       IF L5 = 1 THEN SD = 4:
       DV = DV - 1:DN = 0:SU = 7
10550
       IF L5 = 2 THEN SE = 4:
       DH = DH - 1:EN = 0:SW = 7
```

```
IF CT = 0 THEN GOTO 9050
10560
      CT = CT - 1
10570
10580
       POKE L1.LD:
       POKE L2,L0:
       POKE L3,L0:
       POKE L4, HI
       IF L5 = 1 THEN SD = 5:
10590
       DV = DV - 1:DN = 0:SU = 6
       IF L5 = 2 THEN SE = 5:
10600
       DH = DH - 1:EN = 0:SW = 6
       IF CT = 0 THEN GOTO 9050
10610
       CT = CT - 1
10620
       POKE L1,LO:
10630
       POKE L2,HI:
       POKE L3, LO:
       POKE L4,HI
       IF L5 = 1 THEN SD = 6:
10640
       DV = DV - 1:DN = 0:SU = 5
       IF L5 = 2 THEN SE = 6:
10650
       DH = DH - 1:EN = 0:SW = 5
       IF CT = 0 THEN GOTO 9050
10660
       CT = CT - 1
10670
       POKE L1.LO:
10680
       POKE L2, HI:
       POKE L3, LO:
       POKE L4,L0
       IF L5 = 1 THEN SD = 7:
10690
       DV = DV - 1:DN = 0:SU = 4
10700
       IF L5 = 2 THEN SE = 7:
       DH = DH - 1:EN = 0:SW = 4
       IF CT = 0 THEN GOTO 9050
10710
       CT = CT - 1
10720
       POKE L1,LO:
10730
       POKE L2, HI:
        POKE L3, HI:
        POKE L4,L0
       IF L5 = 1 THEN SD = 8:
10740
        DV = DV - 1:DN = 0:SU = 3
        IF L5 = 2 THEN SE = 8:
10750
        DH = DH - 1:EN = 0:SW = 3
        IF CT = 0 THEN GOTO 9050
10760
       CT = CT - 1
10770
        POKE L1, LO:
 10780
        POKE L2, LO:
        POKE L3, HI:
        POKE L4,LD
       IF L5 = 1 THEN SD = 1:
 10790
        DV = DV - 1:DN = 0:SU = 2
        IF L5 = 2 THEN SE = 1:
 10800
        DH = DH - 1:EN = 0:SW = 2
        IF CT = 0 THEN GOTO 9050
 10810
```

```
10820 CT = CT - 1
     GOTO 10430
10830
11000
      REM
11010
      REM
11020
      REM ********************
11030 REM **
                     CLOUD COVER ROUTINE
11040
      REM
11050 REM *** CLEAR SCREEN AND INITIAL- ***
11060 REM *** IZE LOOP COUNTERS FOR
      REM *** TIME LOOPS.
11070
11080 REM
11090
      HOME
11100
     XX = 0:ZZ = 0
11110 VTAB 8: PRINT TAB( 5) "CLOUD COVER ROUTINE"
      VTAB 10: PRINT "THIS ROUTINE CHECKS THE UPPER SENSOR"
11120
      VTAB 11: PRINT "WAITING FOR THE SUN TO COME BACK OUT"
11130
11140 VTAB 12: PRINT "IF THE SUN HAS NOT COME BACK OUT FOR"
      VTAB 13: PRINT "APPROXIMATELY 10 MINUTES THE SYSTEM"
11150
      VTAB 14: PRINT "WILL AUTOMATICALLY REZERO ITSELF AND"
11160
      VTAB 15: PRINT "WAIT FOR THE SUNS INTENSITY TO AGAIN"
11170
11180
      VTAB 16: PRINT "GO ABOVE THE THRESHOLD VALUE"
11190 REM
      REM *** LOOPS TO ADJUST DELAY
11200
      REM *** TIMES FOR ONE SECOND CLOCK***
11210
      REM
11220
      FOR XX = 1 TO 605
11230
      FOR ZZ = 1 TO 17
11240
11250 REM
11260
      REM *** CHECK UPPER SENSOR, AND
11270 REM *** DISPLAY SENSOR AND TIME
11280 REM *** DATA ON SCREEN.
11290
      REM
      US = PEEK (M + 3):
11300
      US = PEEK (M + 3)
      VTAB 19: PRINT "UPPER SENSOR="US
11310
      VTAB 20: PRINT "DELAY TIME COUNTER="XX" SEC"
11320
11330
      REM
11340
      REM *** IF SUN COMES BACK OUT OR
11350 REM *** REACH 10 MINUTE TIME DUT
11360 REM *** EXIT CLOUD COVER ROUTINE
11370 REM
      IF US > = 131 THEN GOTO 8060
11380
      IF XX > = 600 THEN GOTO 1460
11390
11400 NEXT ZZ
11410 NEXT XX
```

LIST OF REFERENCES

- 1. Howell, J. R., Bannerot, R. B., and Vilet, G. C., Solar-Thermal Energy Systems, McGraw-Hill Book Company, 1982.
- 2. Yurutucu, N., Microprocessor-Based Dual Axis Sun Tracker System, MSEE Thesis, Naval Postgraduate School, December 1982.
- Selman, G. R., Straughen, A., Electric Machines, Addison-Wesley Publishing Company, 1980.
- 4. Mountain Computer Incorporated, A/D + D/A Card Operating Manual, Manual Number 11-00230-02, 1982.
- 5. California Computer Systems, CCS Model 7490 Apple II GPIB (IEEE) Interface Owner's Manual, Manual Number 89000-07490, 1981.
- 6. Apple Computer Incorporated, Applesoft II Basic Programming Reference Manual, Manual Number A2L0006, 1981.

INITIAL DISTRIBUTION LIST

		No.	Copies
1.	Defense Technical Information Center Cameron Station Alexandria, Virginia 22314		2
2.	Library, Code 0142 Naval Postgraduate School Monterey, California 93943		2
3.	Department Chairman, Code 62 Department of Electrical Engineering Naval Postgraduate School Monterey, California 93943		1
4.	Professor H. A. Titus, Code 62Ts Department of Electrical Engineering Naval Postgraduate School Monterey, California 93943		5
5.	Professor A. Gerba, Code 62Gz Department of Electrical Engineering Naval Postgraduate School Monterey, California 93943		1
6.	Lieutenant Roger J. Morais, USN 10831 New Salem Point San Diego, California 92126		2
7.	Captain J. E. Bley, Jr., Code 04 Director of Military Operations Naval Postgraduate School Monterey, California 93943		1

END

FILMED

4-85

DTIC